

2018 Wagerup Refinery Emission Inventory

Prepared for August 2019 Section 46 Review of Conditions

Date: August 2019

Prepared by: Alcoa of Australia Ltd

Table of Published Wagerup Refinery Emission Inventories

Title	Date Published	Description
Wagerup Refinery Air Emission	2002	Results of emissions inventory
Inventory		monitoring program
Wagerup Unit Three Project	2005	ERMP includes summary of existing
Environmental Review and		refinery emissions
Management Plan		·
Wagerup Refinery Air Dispersion	2010	Modelling report includes summary
Modelling		of 2008 refinery emissions
Overview of Wagerup Refinery	2013	Emission Inventory reflecting refinery
Emission Inventory and proposed		and residue conditions in 2012
updates		
Overview of Wagerup Refinery	2015	Emission Inventory reflecting refinery
Emission Inventory 2014		and residue conditions in 2014
2018 Wagerup Refinery Emission	2019	Emission Inventory reflecting refinery
Inventory: Prepared for August 2019		and residue conditions in 2018
Section 46 Review of Conditions		

Executive Summary

This report presents a summary of the Wagerup Refinery Emission Inventory utilising data reflecting refinery and residue conditions in 2018. It describes work that has been conducted since the 2005 Environmental Review and Management Program (ERMP) and additions to the inventory from ongoing monitoring and assessments up to the end of 2018.

Table of Contents

Execu	tive Summary	1
1.	Introduction	1
1.1.	2018 Emission Inventory Summary of Changes	1
1.2.	Pre-2018 Emission Inventory Development	2
1.3.	Emissions Monitoring Framework	3
1.3.1.	2006 to 2018 Improvement Program	3
1.3.2.	2019-2021 Improvement Program	5
2.	Emission Sources	7
2.1.	Sources Included in the Inventory	7
2.2.	Sources Excluded from the Inventory	10
3.	Target Analytes	12
4.	Data Calculations	13
4.1.	Source Information	13
4.2.	Concentration Data	13
4.2.1.	Calculation of Average Concentration	14
4.2.2.	Calculation of Peak Concentration	14
4.3.	Emission Rates	15
4.3.1.	2018 Emission Rates	15
4.3.2.	Scaled Emission Rates for 2.85 Mtpa Production Scenario	16
4.4.	Odour	16
5.	Overview of Emission Sources	17
5.1.	Milling Vents (Building 25)	17
5.2.	Slurry Storage Tanks (25A Tanks)	20
5.3.	Blow-off Tanks (30 containment tanks)	23
5.4.	Sand Separation (Building 26)	26
5.5.	Causticisation (35J Tanks)	29
5.6.	Filtration (35A Tanks)	33
5.7.	Seed Filtration (44-1 and 44-2)	36
5.8.	Precipitation (Building 45)	41
5.9.	Precipitation Cooling Towers (Building 45K)	46
5.10.	Oxalate Kiln RTO Stack (Building 47)	50
5.11.	Oxalate Filter Press Building Stack	53

5.12.	Liquor Burner (Building 48)	56
5.13.	Liquor Burning Slurry Mixing Tank (48A Tank)	59
5.14.	Calciners (Building 50)	62
5.14.1	. Calcination Odour Emissions	71
5.15.	Calciner Low Flow Emissions	73
5.16.	Calcination Cooling Towers (Building 50)	84
5.17.	Boilers (Building 110)	87
5.18.	Gas Turbine/Heat Recovery Steam Generation (Building 110)	94
5.19.	Residue Storage Areas	97
6	References	101

Appendices

- A. Latest source locations
- B. Protocol used for calculation of average concentrations
- C. 2018 Emission files
- D. 2.85 Mtpa Emission files

1. Introduction

The Wagerup Refinery Emission Inventory summarises the state of knowledge of refinery emissions to air. Since emission monitoring processes are ongoing and refinery operating practices can change, knowledge about refinery emissions to air will change over time. As a result, the Emission Inventory will evolve over time to reflect the changed knowledge base.

This document "2018 Wagerup Refinery Emission Inventory: Prepared for August 2019 Section 46 Review of Conditions", updates the inventory to reflect the 2018 operations and emission knowledge base.

Alumina production in 2018 was 2,633,629 tonnes. Alumina production for the licence year (13 November 2017 to 12 November 2018) was 2,659,095 tonnes.

The 2018 Emission Inventory has been developed to support the Section 46 review of conditions, hence its focus on key emissions referenced in Conditions 8 and 9 of Ministerial Statement 728, namely combustion products, particulates, volatile organic compounds (VOCs) and odour.

1.1. 2018 Emission Inventory Summary of Changes

The 2018 Wagerup Refinery Emission Inventory builds on the 2014 inventory as documented in the report "Overview of Wagerup Refinery Emission Inventory 2014" that was published in December 2015.

The 2018 inventory includes the following changes:

- A summary of an Improvement Program aimed at further updating emission estimates (Section 1.3.2);
- A list of all sources that have been excluded from the Emission Inventory (Section 2);
- Use of measured odour data for each source (Section 4.4; Section 5);
- Additional reference information for each emission source, including updated flow data for 2018 (Section 5);
- Detailed emission concentration data for each source, up to and including data collected in 2018 (**Section 5**);
- New data collected from sources identified for inclusion in the 2018 inventory, namely Liquor Burning Slurry Mixing Tank Vent, Oxalate Filter Press Building Stack and Calciner 1,2 & 3 Pan Filter Exhaust Vents (Section 5);
- A modified approach to the calculation of blow-off tank emissions, to account for the intermittent nature of this source (**Section 5.3**);

- A modified approach for determining average VOC concentration for the precipitation cooling towers (Section 5.9); and
- A modified approach for determining odour emission rates from calcination (Section 5.14.1).

1.2. Pre-2018 Emission Inventory Development

The Wagerup Refinery emission inventory was developed in 2002 and was based on the results of an emission inventory monitoring program as required by the Department of Environmental Water and Catchment Protection (DEWCP) licence 6217/5. The inventory monitoring program involved analysis of 17 emission sources for up to 17 classes of compounds.

In 2006 and 2007 an intensive monitoring campaign was undertaken to extend emissions knowledge. A \$1.5M campaign was undertaken focusing on:

- Additional sampling of key sources (15 sources) aimed at improving understanding of variability in emission rates;
- Additional sources added to the emission inventory including sources in the southern and northern parts of the refinery (sand separation, digestion blow-off, precipitation tanks);
- Calculated flow rates for combustion sources were based on continuous process data;
- Further development and improvement of the odour/odorant model utilised in the 2005
 ERMP, including extension to non-volatile organic compound (VOC) odorants; and
- Comprehensive data integrity review undertaken on all emission concentration data.

In 2010 the inventory was updated for the 2008 plant configuration and to include emission sampling data collected up to 2008. The inventory included 38 point sources. The 2008 plant configuration was considered representative of the then current (2010) emissions profile.

In 2013 a report was presented to the Department of Environment Regulation (DER) detailing the emission inventory reflecting 2012 production levels (attributable to 2.65Mtpa¹).

The report "Overview of Wagerup Refinery Emission Inventory 2014" was published in December 2015. This report contained applicable source monitoring data up to and including 2014 and included:

 New data collected from sources identified for inclusion in the 2014 Emission Inventory based on workshops held in October 2013:

¹ Actual alumina production in 2012 was 2.523Mtpa.

- Seed filtration Building sources, 48A tank vent, Calciner 4 low volume vent and extraction hood stack;
- Residue storage areas including RSA9 and ROCP3;
- Data post calciner VOC emissions reduction project (Works approval W5391/2013/1);
- Licensed monitoring data to end of 2014; and
- Updated flow data, where applicable.

1.3. Emissions Monitoring Framework

Alcoa continues to refine and improve its monitoring and emissions calculation techniques since the development of the first emission inventory in 2002. Building upon that inventory, a program of routine monitoring is conducted in response to licence mandated monitoring programs, as well as campaign and project focused monitoring additional to routine needs.

1.3.1. 2006 to 2018 Improvement Program

A program of work was conducted from 2006 to 2018 to further improve emission estimates and source characterisation at the Wagerup Refinery. The program is risk based, focusing on emission sources that are significant contributors to refinery emissions of combustion products, particulates, VOCs and odour. Characterisation of less significant sources (or emissions that are less significant for sources included in the improvement program) occurs less frequently. **Table 1** summarises the program that was implemented. Ongoing characterisation meets the requirements of Department of Water and Environmental Protection (DWER) Licence 6217/1983.

Table 1: Emission inventory improvement program 2006-2018

Source		n to 2018 Total Emission Rat		2006 – 2007	2008 – 2014	2015 - 2018	
Source	Combustion Products	Particulates VOC Odour		2000 – 2007	2000 – 2014	2013 - 2010	
Emission Inven	tory Improveme	ent Program				•	
Milling Vents (25)	Non- Combustion Source	12	11	1.9	VOCs Ammonia Odour	Particulates Metals	
Slurry Storage Tanks (25A)	Non- Combustion Source	Not characterised	20	16	VOCs Ammonia Odour	Metals	
Sand Separation (26)	Non- Combustion Source	Not characterised	1.5	5.7	VOCs Ammonia Odour		
Causticisation (35J)	Non- Combustion Source	<1	3.1	1.4	VOCs Ammonia Odour	Particulates Metals	
Filtration (35A)	Non- Combustion Source	Not characterised	1.0	<1	VOCs Ammonia Odour		
Seed Filtration (44)	Non- Combustion Source	Not characterised	3.1	1		Priority VOCs ² Odour	
Precipitation (45)	Non- Combustion Source	Not characterised	<1			VOCs	
Precipitation Cooling Towers (45K)	Non- Combustion Source	Not characterised	13	25	VOCs	Metals	VOCs Ammonia Odour
Oxalate Kiln RTO Stack (47)	<1	<1	<1	<1		Metals	
Oxalate Filter Press Building Stack	Non- Combustion Source	Not characterised	<1	<1			VOCs Ammonia Odour
Liquor Burner	4.3	<1	<1	3.7	VOCs Ammonia Odour	Metals	Metals
Liquor Burning Slurry Mixing Tank (48A)	Non- Combustion Source	Not characterised	<1	<1		Priority VOCs Odour	
Calcination	46	87	34	35	VOCs Ammonia Odour	Metals	Metals
Calciner 1-3 Low Volume Vent Stack	<1	Not characterised	1	<1		VOCs Odour Metals	
Calciner 4 Low Volume Vent Stack	Non- Combustion Source	Not characterised	2.5	<1		Priority VOCs Odour	
Calciner 1-3 Pan Filters Exhaust Vents	Non- Combustion Source	Not characterised	1.9	<1			VOCs Odour
Calciner 4 Extraction Hoods	Non- Combustion Source	Not characterised	0.1	<1		Priority VOCs Odour	

² Priority VOCs are acetaldehyde, acetone, 2-butanone, formaldehyde and benzene.

Source	% Contributio	n to 2018 Total Emission Rat	-	2006 – 2007	2008 – 2014	2015 - 2018	
Source	Combustion Particulates VOC Odour		2000 – 2007	2006 – 2014	2013 - 2018		
Emission Inven	tory Improveme	ent Program					
Boilers	34	Not characterised	6.1	7.3		Metals	Metals
GT/HRSG	16	Not ch	aracterise	ed		Metals	Metals
Ongoing Charac	terisation						
Liquor Burner	4.3	<1	<1	3.7	Combustion gases Particulates Priority VOCs Odour	Combustion gases Particulates Priority VOCs Odour	Combustion gases Particulates Priority VOCs Odour
Calcination	46	87	34	35	Combustion gases Particulates Priority VOCs Odour	Combustion gases Particulates Priority VOCs Odour	Combustion gases Particulates Priority VOCs Odour
Boilers; GT/HRSG	49	Not characterised	6.1	7.3	Combustion gases	Combustion gases	Combustion gases
Oxalate Kiln	<1	<1	<1	<1		Combustion Gases Particulates Priority VOCs Odour	Combustion gases Particulates Priority VOCs Odour
Calciner 1-3 Low Volume Vent Stack	<1	Not characterised	1	<1	Combustion gases Priority VOCs Odour	Combustion gases Priority VOCs Odour	Combustion gases Priority VOCs Odour

1.3.2. 2019-2021 Improvement Program

A program of work has been identified to further improve emissions estimates. The program aligns with plans previously developed by Alcoa as part of continuous improvement of the Emission Inventory.

The Improvement Program was developed by conducting a high-level review of data included in the Emission Inventory to identify sources with small data sets (less than 10 data points), sources with old data (greater than 10 years old) and sources which prove problematic for application of standard methodologies (e.g. saturated sources and diffuse sources).

Table 2 provides a broad outline of the work program. The program identifies work areas for the next 3 months, 12 months and 24 months. The Wagerup Refinery Emission Inventory will continue to be updated as new information is acquired.

Table 2: Proposed program of further monitoring to improve the Wagerup Emission Inventory

Timing	Source	Analytes		
	Calcination	Metals		
	Powerhouse	Metals		
		Odour		
		VOCs		
3 months		Ammonia		
	Precipitation Cooling Towers	Odour		
	(Building 45K)	VOCs		
		Ammonia		
	Refinery (multiple sources)	Mercury		
	Mills	Odour		
		VOCs		
		Ammonia		
	Seed filtration (Building 44)	Odour		
		VOCs		
12 Months		Ammonia		
12 1010111115	Filtration (35A tanks)	Odour		
		VOCs		
		Ammonia		
	Causticisation (35J tanks)	Odour		
		VOCs		
		Ammonia		
	Sand Separation (Building 26)	Odour		
		VOCs		
		Ammonia		
24 Months	Blow-off tanks (Building 30)	Odour		
		VOCs		
		Ammonia		
		Ammonia		

2. Emission Sources

The emissions from the Wagerup Refinery fall into two main categories, namely Bayer and non-Bayer process sources. Bayer process sources are all those associated with the Bayer process liquor that is used to digest the bauxite to produce alumina. These sources generate a variety of substances and emissions that are typical of the alumina refining process, as well as other substances that are more generic in industrial and mineral processing. It is these emissions that produce the characteristic odour associated with Bayer process refineries. Non-Bayer process emissions include products of combustion of natural gas fired boilers and gas turbines, and those related to constituents in the fuels consumed in the refinery.

2.1. Sources Included in the Inventory

Emission sources deemed 'significant' are included in the emission inventory. Emission sources are defined as 'significant' if they emit any one of the following key chemicals at levels greater than 1% (>1%) of the total refinery emission for that chemical:

- Oxides of nitrogen (NO_x), carbon monoxide (CO) or total suspended particulates (TSP);
- Odour; or
- Total VOCs.

For example, if the total refinery emission rate for total VOCs coming from the significant sources is 100 g/s, then any source that emits total VOCs at greater than 1 g/s will be defined as 'significant' and therefore will be included in the inventory. Sources categorised as 'insignificant' do not emit any target chemicals at greater than 1% of the total refinery emission for that chemical.

Note that some sources (e.g. Seed filtration and Calciner 4 extraction hoods) do not meet the significance criteria. They have been included in the inventory because they were identified as part of a review of southern refinery sources conducted in 2013.

The 2018 Emission Inventory includes 55 point sources and 12 fugitive sources as listed in **Table 3**.

Table 3: Sources included in the 2018 Wagerup Emission Inventory

Area	Source	Report Section		
	Mill 3 Vent			
Milling (Building 25)	Mill 4 Vent	5.1		
	Mill 5 Vent			
	25A-1 Tank Vent 1			
	25A-1 Tank Vent 2			
Churry Storogo (Building 25A)	25A-2 Tank Vent	5.2		
Slurry Storage (Building 25A)	25A-3 Tank Vent 1	5.2		
	25A-3 Tank Vent 2			
	25A-4 Tank Vent			
Diament Tables (Dellation 00)	Blow-off Stack 1	5.0		
Blow-off Tanks (Building 30)	Blow-off Stack 2	5.3		
Sand Separation (Building 26)	Building 26 Stacks	5.4		
	35J-11 Tank Vent			
	35 J-12 Tank Vent			
	35J-13 Tank Vent			
Causticisation (Building 35J)	35J-14 Tank Vent	5.5		
	35J-15 Tank Vent			
	35J-24 Tank Vent			
	35J-25 Tank Vent			
	35A-1 Tank Vent			
Filtration (Duilding 25A)	35A-2 Tank Vent	F 0		
Filtration (Building 35A)	35A-1 Overflow Pipe	5.6		
	35A-2 Overflow Pipe			
	44-1 Main Stack			
	44-1 Hood 1			
Seed Filtration (Building 44)	44-1 Hood 2	5.7		
	44-2 Main Stack			
	44-2 Hood			
	Row 0 Precipitation Tanks			
	Row 1 Precipitation Tanks			
Decimination (Duilding 45)	Row 2 Precipitation Tanks	5 0		
Precipitation (Building 45)	Row 3 Precipitation Tanks	5.8		
	Row 4 Precipitation Tanks			
	Row 5 Precipitation Tanks			
D 1222 D 12	45K Cooling Tower 1			
Precipitation Cooling Towers (Building 45K)	45K Cooling Tower 2	5.9		
(Dulluling 45K)	45K Cooling Tower 3	1		
Ovelete Demonst /Dullstin	Oxalate Kiln RTO Stack	5.10		
Oxalate Removal (Building 47)	47K1 Oxalate Filter Press Building Stack	5.11		

Area	Source	Report Section		
Lieuas Duraes (Duilding 40)	Liquor Burner	5.12		
Liquor Burner (Building 48)	48A Slurry Mixing Tank	5.13		
	Calciner 1			
	Calciner 2	E 4.4		
	Calciner 3	5.14		
	Calciner 4			
	Calciner 1-3 Low Volume Vent Stack			
Calcination (Building 50)	Calciner 4 Low Volume Vent Stack			
	Calciner 1,2,3 Pan Filters Exhaust Vents	5.15		
	Calciner 4 Extraction Hoods			
	Calcination Cooling Tower 1	E 40		
	Calcination Cooling Tower 2	5.16		
	Boiler 1			
	Boiler 2	5.17		
Powerhouse (Building 110)	Boiler 3			
	Gas Turbine/Heat Recover Steam Generator	5.18		
	Lower Dam			
	Run-off Collection Pond (ROCP)			
	RSA2 – Liquor Southern			
	RSA2 – Wet Residue North			
	Super Thickener			
Residue Storage Area	Cooling Pond	5.19		
Residue Storage Area	Oxalate Pond	J. 19		
	Run-off Water Storage (ROWS)			
	Wet residue			
	Dry Residue 1			
	Dry Residue 2			
	Wet Sand			

2.2. Sources Excluded from the Inventory

The sources that have been excluded from the Wagerup Refinery Emission Inventory are listed in **Table 4**.

Table 4: Sources excluded from the 2018 Wagerup Emission Inventory

Source name	Description	Reason for exclusion from inventory
Milling: 25 Cooling Tower	Cooling tower runs on Upper Dam³ water exclusively.	No significant odours or emissions expected due to use of Upper Dam water.
Condensate Facilities: 43D Barometric Condenser	Condensate dump tank for B30 and B42 live steam heaters	Only clean condensate used, so expect negligible odours or emissions. Normally an intermittent emission.
Precipitation: 45A	2 x flat bottom tanks	No emissions evident. Low volume, temperature ~85°C
Precipitation: 45B – 0 to 6	Secondary thickeners with vents and openings	Low volume emission. Temperature of product <60°C
		Thickeners 3-6 have covers.
Precipitation: 45C and 45P	Surge tanks – seed and spent liquor slurry. Open tanks	Low volume tanks and low temperature (~60°C). Droppers added into bottom of tank to reduce odours and turbulence. Only one in use at any point in time.
Precipitation: 45D – 0 to 6	Tray thickeners – closed top tanks with vents and openings	Low volume. Closed top tanks. Low temperature (~60°C).
Precipitation: 45E	Closed spent liquor tank with vents and openings	Low volume. Closed tank. Low temperature (~60°C).
Precipitation: 45G	Flat bottomed tank with no vents. Contains cold, low caustic concentration water.	Contains cold (~32°C), low caustic concentration water.
Precipitation: 45H	Flat bottomed tank with no stacks. Contains low caustic concentration water.	No stacks; contains low caustic concentration water. Temperature ~60-70°C
Oxalate press building: 47	Building containing oxalate filters. Six vents around outside of building.	No odours detected during occupational testing in 2012/2013.
Oxalate precipitation: 47A – 0, 1 and 2 tanks	Open top tanks	No significant odours or emissions observed. Temperature ~60-65°C.
Oxalate: 47U (2 tanks) crystallisers	Seed tanks with 1 vent on each tank	No significant odours or emissions observed. Temperature ~95-100°C.

_

³ The Upper Dam water source is 'fresh surface water' sourced from rainfall runoff and Yalup Brook. This is used predominantly as the Refinery potable water supply.

Source name	Description	Reason for exclusion from inventory
Oxalate: 47T – 1, 2 and 3 tanks	Oxalate thickeners with 2 vents on each tank. Each tank has a series of hatches that can open or close, though standard practice is to have these closed.	No significant odours or emissions observed. Temperature ~60-65°C.
Oxalate: 47E	Tank with no stack, though does have lid vent	No significant odours or emissions observed. Temperature ~65°C.
Liquor burning: 48L	Leach tank wet scrubber with one stack with low flow rate. Scrubber uses lower dam water. Closed tank.	No significant odours or emissions observed. Temperature ~90°C
Liquor burning: 48E cooling tower	Tank runs on Upper Dam water exclusively.	No significant odours or emissions expected due to use of Upper Dam water. Temperature ~50°C
Liquor burning 48D and 48E	Fugitive emission sources within building	Localised emissions with low volume.
Liquor burning: South side of 48D and 48E	Several vents associated with 48T, 48F tank area.	No significant odours or emissions identified. Temperature ~90-100°C
Calcination: 50H	Scrubber for particulates. Small stack near 50B and 50C with one vent for two tanks (duty spare).	No significant odours or emissions identified. Temperature ~60-65°C
Calcination: 50J	Hydrate storage shed	No emissions observed.
51B Alumina storage	Flat bottomed tank with domed roof	No emissions observed.
51A-1 Alumina storage	Includes train loading facility.	Unlikely to be a significant source of particulate emissions. No odours detected.
6C Caustic Storage Tank	Flat bottomed tank.	Caustic not volatile so emissions expected to be negligible.
6D Caustic unloading	Caustic unloading facility.	No odours evident. Caustic not volatile so emissions expected to be negligible.
Powerhouse 110C Cooling Tower	Cooling tower runs on Upper Dam water exclusively.	No significant odours or emissions expected due to use of Upper Dam water.

3. Target Analytes

The procedure used to select the target analytes is derived from that developed during the Wagerup 3 expansion study which is detailed in the Environ report "Compound Selection Procedure: Wagerup Refinery Unit Three Expansion", 2005.

The following target analytes are included in the inventory:

- Combustion Gases carbon monoxide (CO), sulphur dioxide (SO₂), oxides of nitrogen (NO_x);
- Ammonia;
- Particulates;
- Volatile Organic Compounds (VOCs) acetaldehyde, acetone, benzene, 2butanone, ethylbenzene, formaldehyde, toluene, xylenes, styrene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene;
- Polyaromatic Hydrocarbons (PAHs), as measured by naphthalene; and
- Odour.

Acrolein, vinyl chloride and methylene chloride were originally included, but were subsequently removed from the target suite.

Acrolein and vinyl chloride were excluded based on the results of an intensive emissions monitoring program that was carried out in 2006 and 2007 at Wagerup Refinery. For the VOC measurements, US EPA Method 0030 – Volatile Organics Sampling Train (VOST) was employed in preference to the previously utilised Method 18 VOC measurements. The VOST method has a wider range of detectable substances, with lower limits of detection than Method 18. Utilising the VOST method, neither acrolein nor vinyl chloride were detected in any emission sources at above their method limits of detection. Prior to this, these substances had been detected on a few occasions using Method 18. Given that the limits of detection for the VOST method were significantly lower than for the earlier Method 18 tests, and they had only previously been detected on a few occasions, acrolein and vinyl chloride were concluded as unlikely to exist in refinery emissions and were removed from the emission inventory.

Methylene chloride was excluded based on the results of an investigation into the sources and distribution of methylene chloride in refinery emissions and in ambient air, as recommended by CSIRO in its 2004 Air Quality Review (CSIRO, 2004). It was concluded that methylene chloride should be excluded due to (a) the potential for laboratory contamination; and (b) the absence of methylene chloride in refinery emission studies and ambient air studies (Wagerup Air Quality Technical Advisory Panel, 2007).

4. Data Calculations

4.1. Source Information

The 2018 inventory includes the following source information for each emission source, where available:

- Source name and abbreviation;
- Physical characteristics:
 - Number of stacks;
 - Stack height;
 - Stack diameter;
 - Location;
 - o Sample plane compliance with AS4323.1-1995 (Stationary Source Emissions
 - Selection of Sampling Positions); and
 - Source type information (Single/multi-flue, point/volume/area).
- Regulated source. Emission sources have been defined as a "regulated source" if there are conditions in environmental licence L6217/1983 to conduct monitoring for that source:
- CEMS (Continuous Emissions Monitoring System) information;
- · Gas stream characteristics:
 - o Temperature;
 - Exit velocity;
 - Moisture content; and
 - Flow rate. For all analytes, except for odour, dry flow rates were used for the calculation of emission rates.
- Emission frequency (continuous or intermittent); and
- Emission control a description of any emission control equipment or systems.

Stack characteristics were reviewed and updated where necessary to reflect 2018 conditions.

A map showing refinery source locations is provided in **Appendix A**.

4.2. Concentration Data

The 2018 inventory includes monitoring data collected up to 2018 (as directed by compliance monitoring in environmental licence L6217/1983) where available. **Table 5** provides a summary of the relevant compliance data applicable to the inventory.

Table 5: Compliance data applicable to Wagerup 2018 emission inventory

		Priority VOCs Combustion Gases								
Analytes	Acetaldehyde	Acetone	Formaldehyde	2-Butanone	Benzene	СО	NOx	SO ₂	Dust	Odour
Combustion Point	combustion Point Sources									
Liquor Burner	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Calciner 1	X	Х	X	Х	Х	Х	Х	Х	Х	Х
Calciner 2	X	Х	X	Х	Х	Х	Х	Х	Х	Х
Calciner 3	X	Х	Х	Х	Х	Х	Х	Х	Х	Х
Calciner 4	X	Х	X	Х	Х	Х	Х	Х	X	Х
Boiler 1						Х	Х	Х		
Boiler 2						Х	Х	Х		
Boiler 3						Х	Х	Х		
Gas Turbine/HRSG						Х	Х	Х		
Oxalate kiln	X	X	X	Х	Х	Х	Х	Х	Х	Х
Non-Combustion	Non-Combustion Point Sources									
Calciner 1-3 Low Volume Vent	Х	Х	Х	Х	Х	Х	Х	Х		Х

Stack testing methods are listed for each source. Note that in some cases a modified or consultant-developed version of the US EPA method has been used.

In the emission information for each source, 'ND' denotes that a compound has not been detected on any sampling occasion.

Naphthalene concentrations are converted to BaP equivalents using a potency factor of 0.001.

4.2.1. Calculation of Average Concentration

The average concentration has been calculated for each dataset using the Alcoa protocol as explained in **Appendix B**.

4.2.2. Calculation of Peak Concentration

In most cases, the 'peak' concentration was deemed to be the maximum measured concentration value identified for each individual source.

It was not considered appropriate to use the above methodology for the 25A tanks and hence these were determined differently, as explained below.

a) 25A Tanks

For most sources, the maximum emission rates occur when the peak flow produces a maximum concentration of an analyte. However, it has been observed for 25A3 and 25A2 that high concentrations do not occur at times of high flow, and in fact there may be an inverse relationship. Consequently, the peak emission rates for 25A (VOCs and ammonia) were calculated differently to the other sources in this report.

Emission rates were calculated for each concentration/flow pair for acetaldehyde and acetone for which sampling data (dates and times) were available. The higher emission rates calculated were nominated as the 'peak mass emission event', and the flow rate measured at this time was considered to be the 'peak flow rate'. This 'peak flow rate' was then applied to the peak concentration data for all VOCs and ammonia to calculate the emissions rates.

The emission rates for all other analytes were calculated as per the standard protocol.

It has been assumed that the flow rates from 25A1 and 25A4 are the same as the flow rates from 25A2.

4.3. Emission Rates

4.3.1. 2018 Emission Rates

For the 2018 calendar year, average and peak emission rates were calculated using the applicable concentration values multiplied by the applicable flow rates, i.e.

Average emission rate for each source = average concentration x average flow rate

Peak emission rate for each source = peak concentration x peak flow rate

The use of the peak concentrations and the peak flows to calculate peak emissions⁴ is considered conservative, since in some cases the peak concentrations would not coincide with peak flows.

Where data is available, equipment availability is incorporated into average flow rates.

2018 Average and peak emission rates for each source are provided in **Appendix C**.

⁴ Excepting 25A as detailed in text above.

4.3.2. Scaled Emission Rates for 2.85 Mtpa Production Scenario

Scaled emission rates have been provided for the licenced production rate of 2.85 Mtpa (Refer Licence L6217/1983/15 issued by the then Department of Environment Regulation) in **Appendix D**.

The VOC and odour emissions rates estimated for a 2.85 Mtpa production scenario are forecast using a consistent methodology applied to the 2018 Emission Rates (**Appendix C**). Emissions changes are predicted using a defined methodology developed based on refinery production level with aspects of tank surface area changes, flow changes and equipment addition or subtraction specific to each operating building.

4.4. Odour

Odour emission rates have been determined from measurements conducted using dynamic olfactometry (AS4323.3).

Previous versions of the Wagerup Emission Inventory have used a fitted odour model for most emission sources, using the concentrations of specific odorants (mainly VOCs) to calculate the 'fitted' odour (DAA 2008, 2013). For some sources, these specific odorants have not been measured, and so measured odour data was used. To address this discrepancy as well as DWER concerns, odour measured using dynamic olfactometry has been included for all sources in the 2018 Emission Inventory.

A slightly modified approach has been used to determine odour emission rates from calcination. The approach set out in **Section 4.3** is believed to present an unrealistically high peak for odour concentration from the calciners. To address this, calcination odour emissions have been determined using measured emission rates (i.e. concentration multiplied by the flow rate measured at the time of sampling) rather than average and peak measured concentrations multiplied by the calculated average and peak flow rates. This approach is described in more detail in **Section 5.14.1**.

5. Overview of Emission Sources

5.1. Milling Vents (Building 25)

In milling, crushed bauxite from the stockpile is mixed with hot caustic liquor. VOCs are formed from the breakdown of naturally occurring organic matter in the bauxite as it contacts the hot caustic. As the temperatures and residence times are lower and shorter in the mills compared to subsequent process steps, the concentration and flows of vapour emissions from this source are relatively small.

There are 3 mills in operation at Wagerup (Mill 3, Mill 4 and Mill 5) with the processes in each mill being essentially the same. The emissions from Mill 3 Trommel Vent were sampled because, as the largest mill, it has the highest throughput and emissions. Using concentration data from Mill 3 for all other mills is a conservative approach which will slightly overstate their emission rates.

Assumptions:

The emission concentrations at Mills 4 and 5 were the same as Mill 3.

Figure 1: Mills 4 and 5

	mmel Vents (Building							
Source Name	Name	Milling Trom	Milling Trommel Vents – Mill 3, 4 and 5					
	Abbreviation	Building 25	Building 25					
Physical	No. of Stacks	3 vents						
Characteristics	Height (m)	13						
	Stack tip diameter	0.45						
	(m)							
	Location (Easting &	Mill 3	398,344.046	6,357,977.598				
	Northing)	Mill 4	Mill 4 398,288.396 6,					
		Mill 5	6,358,010.942					
	Single/Multi-flue	Single Non-ideal						
	Sample Plane							
	(Ideal/Non-ideal)							
	Source Type (Point/	Point						
	volume/ Area)							
Regulated Source		No						
CEMS		None						
Gas Stream		A	Peak					
Characteristics	Temp (°C)		68	68				
	Exit velocity (m/s)		17.3	22				
	Moisture content		24	22				
	(%)							
	Flow Rate (Dry	Mill 3	6052	7867				
	Nm³/hr)	Mill 4	6052	7867				
		Mill 5	6052	7867				
	Flow Rate	Measured						
	(measured or calculated)							
Emission Frequency	Continuous / Intermittent	Continuous when mills operational						
Emission Control(s)		None						

Table 7: Emission Information for Mill Trommel Vents

Emission Sampling Period	Mid 2002, 2007 and	2008	Comment All sampling conducted on Mill 3.					
Gas Stream Characteristics	2007		Assumptions	Mill 3 concentra	tions are represe	ntative of emissions	rom Mill 4 and	15
Compound Class	Compound Method		Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Miscellaneous	Odour	AS4323.3	OU/wet/Nm ³	3778	4030	3350-4030	4	296
	Ammonia	USEPA CTM-027	mg/m³	75	83	55 – 83	6	11
	Particulate	USEPA M5	mg/m³	74	100	39-100	3	32
VOCs	Acetaldehyde	Modified USEPA MTO5 ⁵	mg/m³	16	18	14 - 18	5	1.9
	Acetone	Modified USEPA MTO5	mg/m³	40	56	26 - 56	5	12
	Benzene	USEPA M18 (tube)	mg/m³	0.050	0.069	ND - 0.069	4	0.033
	2-butanone	Modified USEPA MTO5	mg/m³	2.1	2.6	1.6-2.6	5	0.38
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	5	-
	Naphthalene	USEPA M30 (VOST)	mg/m³	0.0083	0.0090	0.0070-0.0090	3	0.0012
	Ethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	5	-
	Styrene	USEPA M30 (VOST)	mg/m³	ND	ND	-	5	-
	Toluene	USEPA M30 (VOST)	mg/m³	0.12	0.18	0.079-0.18	4	0.048
	1,2,4 Trimethylbenzene	USEPA M30 (VOST)	mg/m³	0.15	0.65	0.014-0.65	8	0.21
	1,3,5 Trimethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	5	-
	Xylenes	USEPA M30 (VOST)	mg/m³	0.052	0.063	0.043-0.063	3	0.010

 5 US EPA Method TO-5 for sampling aldehydes and ketones in ambient air was modified to allow sampling from a vent

5.2. Slurry Storage Tanks (25A Tanks)

Slurry storage is the next processing step after milling. A series of tanks receive the bauxite slurry to remove dissolved silica from the milled ore. It operates at a lower temperature but has longer residence time than the subsequent digestion process. Excess flash vapour from the digestion process is used to heat the slurry and, consequently, there is release of vapour from the vents associated with each slurry storage tank.

The Wagerup facility comprises four tanks in series: 25A3, 25A1, 25A4 and 25A2. 25A3, the first tank in the series (referred to as the 'head tank'), is the hottest because it receives flash vapour (steam) directly from the digestion process. The digestion flash vapour contains some organics, and some of these are released with excess steam. (Note: When 25A3 is off-line, 25A1 acts as the head tank).

Emissions from the four tanks are via vents. The 25A3 and 25A1 tanks have two vents each, while the remaining tanks have one vent each. Given that 25A3 is the head tank and receives flash vapour from digestion, it has a different emission concentration and flow rate to the remaining three downstream tanks.

Sampling for the slurry storage tanks was performed on a single vent from each of 25A3 and 25A2.

Section 4.2.2 describes how peak emission rates were determined for the 25A tanks. Peak parameters have been selected based on peak flow rates; hence some parameters (e.g. moisture) have peak value lower than the average value.

Assumptions:

Where available, 25A2 concentration and flow data were used for 25A1, 25A2 and 25A4. For parameters that have not been measured at 25A2, including ammonia, 25A3 data were used for all tanks.

Figure 2: (a) 25A Tanks; (b) 25A vent example

Table 8: Slurry Storage Tank Source Information

Source Name	Tank Source Information Name	Slurry Storage Tanks			
	Abbreviation	25A-1, 25A-2, 25A			
Physical	No. of Stacks	6	. 0, 20, 1		
Characteristics	Height (m)	25.4			
	Stack tip diameter (m)	0.75			
	Location (Easting &	25A-1 Vent 1	398280.132	6357887.138	
	Northing)	25A-1 Vent 2	398280.132	6357887.138	
		25A-2 Vent	398280.132	6357863.138	
		25A-3 Vent 1	398256.132	6357887.138	
		25A-3 Vent 2	398256.132	6357887.138	
		25A-4 Vent	398317.134	6357863.142	
	Single/Multi-flue	Single	330317.134	0307003.142	
	Sample Plane (Ideal/Non-	Non-ideal			
	ideal)	Non ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
CEMS		None			
Gas Stream Characteristics			Average	Peak	
Citatacteristics	Temp (°C)	25A-1	95	94	
		25A-2	89	90	
		25A-3	98	96	
		25A-4	92	92	
	Exit velocity (m/s)	25A-1	0.88	1.0	
		25A-2	3.9	4.7	
		25A-3	6.8	11	
		25A-4	3.3	3.9	
	Moisture content (%)	25A-1	68	70	
		25A-2	68	70	
		25A-3	90	86	
		25A-4	68	70	
	Flow Rate (Dry Nm3/hr)	25A-1 Vent 1	338	372	
		25A-1 Vent 2	338	372	
		25A-2	676	743	
		25A-3 Vent 1	761	1785	
		25A-3 Vent 2	761	1785	
		25A-4	676	743	
	Flow Rate (measured or calculated)	Measured			
Emission Frequency	Continuous / Intermittent	Continuous when operational	respective 25A	tanks are	
Emission Control(s)		None			

Table 9: Emission Information for Slurry Storage Tanks

Emission Sampling Period	2002-2007	narry Glorago Tarino	Comment	Sampling for the slurry storage tanks was performed on a single vent from each of 25A3 and 25A2.					
Gas Stream Characteristics	2007		Assumptions	from 25	The concentrations measured from 25A2 were assumed to represent the emissions from 25A1 and 25A4. For VOCs and odour, 25A2 concentration data were used fo 25A1, 25A2 and 25A4. For ammonia, 25A3 data were used for all tanks.				ere used for
Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Missellenseus	Odour	AS4323.3	OU/wet/Nm ³	25A-2 25A-3	14806 44257	34360 231700	697-34360 900-231700	18 30	11372 57571
Miscellaneous	Ammonia Particulate	USEPA CTM-027 Not characterised	mg/m³		2446	5479	371-5479	11	1854
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	25A-2 25A-3	57 227	92 548 ⁶	27-92 39-648	18 29	17 172
	Acetone	Modified USEPA MTO5	mg/m³	25A-2 25A-3	480 292	644 598 ⁷	195-644 60-966	18 29	131 211
	Benzene	USEPA M18 (tube)	mg/m³		0.58	2.0	0.23-2.0	13	0.44
	2-butanone	Modified USEPA MTO5	mg/m³	25A-2 25A-3	52 24	72 75	19-72 0.23-75	18 29	17 21
	Formaldehyde	Modified USEPA MTO5	mg/m ³	25A-2 25A-3	ND ND	ND ND		31 18	
	Naphthalene	USEPA M18	mg/m³		ND	ND	-	12	-
	Ethylbenzene	USEPA M18	mg/m³		0.46	0.80	0.010-0.80	15	0.18
	Styrene	USEPA M18	mg/m³		0.050	0.10	0.010-0.10	3	0.046
	Toluene	USEPA M18	mg/m³		5.5	19	0.47-19	14	5.0
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³		0.59	3.7	0.0-3.7	15	1.3
	1,3,5 Trimethylbenzene	USEPA M18	mg/m ³		0.82	1.5	0.22-1.5	15	0.43
	Xylenes	USEPA M18	mg/m³		0.51	2.9	0.22-2.9	14	0.76

⁶ This is the concentration at peak emission rate

⁷ This is the concentration at peak emission rate

5.3. Blow-off Tanks (30 containment tanks)

Digester slurry exits the digester tanks and goes through a series of flash tanks for cooling. Vapours generated by the reduction in pressure as it passes through the first stages of cooling are directed to heaters to heat incoming digester liquor and other slurry heating functions. The final stage of cooling is via two blow-off tanks (in parallel). The slurry in the blow-off tanks is cooled and pumped to sand removal. The vapour from these tanks goes to the blow-off heater, the washer overflow heater and the vapour condenser via the overflow tank. The vapour in the overflow tank is drawn into the vapour condenser via the vacuum pump.

Emissions from the blow off tank vapour condensers are minimal, however intermittent emissions can occur when heaters are offline, or when heat transfer achieved in the heaters is less than design, such that excess vapour carryover is presented to the condensers.

Blow-off vapour flows have been determined based on a calibrated reference model using annual averages for refinery production and energy flows.

Previous inventory versions included a peak and average emission rate for this source. Since emissions from this source are intermittent, only a peak emission rate has been included in the 2018 emission inventory for this source. Peak emission rates were calculated using the peak measured concentration multiplied by the vapour flow.

Assumptions:

Due to the intermittent nature of this source, it has been assumed that the average flow rate is zero.

Figure 3: Digestion and 30-2 containment tank stack

Table 10: Blow-off tanks Source Information

Source Name	Name	Blow-off (stack 1)			
Source Name	Name	Blow-off (s	,		
	A11	,			
	Abbreviation		ment tanks 1 & 2	2	
Physical	No. of Stacks	2			
Characteristics	Height (m)	24.3			
	Stack tip diameter (m)	0.730			
	Location (Easting &	Stack 1	398358	6357829	
	Northing)	Stack 2	398311	6357833	
	Single/Multi-flue	Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
CEMS		None			
Gas Stream Characteristics		Av	verage	Peak	
	Temp (°C)		375	375	
	Exit velocity (m/s)		4.6	4.6	
	Moisture content (%)		99	99	
	Flow Rate (Dry Nm³/hr)	Stack 1	0	62	
		Stack 2	0	221	
	Flow Rate (measured or calculated)	Calculated		,	
Emission Frequency	A 11 11 111 1	Intermittent			
Linission Frequency	Continuous / Intermittent	Intermitten	Ţ		
Emission Control(s)	Control 1		ndenser/non-cor	ndensable gas	
• •		Vapour cor	ndenser/non-cor	ndensable gas	
• •	Control 1	Vapour cor destruction 2002 Continuous	ndenser/non-cor system s unless mainter n on the condens		

Table 11: Emission Information for Blow-off Tank Stacks

Emission Sampling Period	2002		Comment	No data has been collected since the non-condensable destruction system has been installed. Assumed that concentrations in Stack 1 and Stack 2 are identical.				
Gas Stream			Assumptions					
Characteristics	2018				ntrations have been use zero for this source		sumed that a	verage
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	70020	70020	4959-111650	3	57054
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	3102	3102	2481-3722	2	878
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	274	274	54-705	3	373
	Acetone	Modified USEPA MTO5	mg/m³	1405	1405	80-3915	3	2175
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	3	-
	2-butanone	Modified USEPA MTO5	mg/m³	218	218	23-594	3	326
	Formaldehyde	Modified USEPA MTO5	mg/m³	6.3	6.3	3.0-12	3	4.9
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	USEPA M30 (VOST)	mg/m³	2.4	2.4	0.1-4.7	3	2.3
	1,2,4 Trimethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	3	-
	1,3,4 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

5.4. Sand Separation (Building 26)

After separation of dissolved silica from the milled ore, the undissolved sand is washed to maximise the recovery of liquor. Vapour can be emitted from the vents and the general building.

Building 26 has five stacks (26-1 A-rake ventilation stack, 26-2 A-rake ventilation stack, 26-3 A-rake ventilation stack, 26-3 belt filter vacuum stack and 26-3 hood stack) which are modelled as a single source. Only one stack was sampled in 2007 and the data used for all five stacks.

Assumptions:

All vent emissions were assumed to have the same concentration as vent 26-1.

Figure 4: Sand Separation (Building 26)

Table 12: Sand Separation Source Information

Source Name	Name	Sand separation			
	Abbreviation	Building 26			
Dhysical	No. of Stacks	5 (modelled as a single so	uroo)		
Physical Characteristics		,			
Cital acteristics	Height (m)	27			
	Stack tip diameter (m)	1.13			
	Location (Easting & Northing)	398182.683	6357857.691		
	Single/Multi-flue	Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
CEMS		None			
Gas Stream Characteristics		Average	Peak		
	Temp (°C)	82	82		
	Exit velocity (m/s)	14	28		
	Moisture content (%)	50	50		
	Flow Rate (Dry Nm3/hr)8	19839 38585			
	Flow Rate (measured or calculated)	Measured & calculated			
Emission Frequency	Continuous / Intermittent	Continuous when Building	26 operational		
		None			

⁸ This is the flow rate for all five stacks

Table 13: Emission Information for Sand Separation

Emission Sampling Period	2007		Comment	All sampling was done on vent 26-1.				
Gas Stream Characteristics	2018		Assumptions	All vent emissions were assumed to have the same concentration as vent 26-				ent 26-1.
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	6998	13300	4270-13300	4	4287
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	54	67	42-67	4	13
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	3.0	3.6	2.0-3.6	4	0.73
	Acetone	Modified USEPA MTO5	mg/m³	4.5	7.1	3.0-7.1	4	1.9
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	4	-
	2-butanone	Modified USEPA MTO5	mg/m³	0.30	0.59	0.20-0.59	4	0.20
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	4	-
	Naphthalene	USEPA M30 (VOST)	mg/m³	ND	ND	-	6	-
	Ethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	6	-
	Styrene	USEPA M30 (VOST)	mg/m³	ND	ND	-	6	-
	Toluene	USEPA M30 (VOST)	mg/m³	0.046	0.080	0.016-0.080	4	0.030
	1,2,4 Trimethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	6	-
	1,3,5 Trimethylbenzene	USEPA M30 (VOST)	mg/m³	ND	ND	-	6	-
	Xylenes	USEPA M30 (VOST)	mg/m³	ND	ND	-	4	-

5.5. Causticisation (35J Tanks)

In this processing step, green liquor is dosed with lime to regenerate caustic soda from sodium carbonate. The process takes place above 100°C and is accompanied by the release of vapour.

Wagerup operates two Lime Causticisation units. Unit 1 consists of four tanks in series: 35J-12, 35J-13, 35J-14 and 35J-15. Unit 2 consists of two tanks in series: 35J-24 and 35J-25. An additional tank (35J-11) receives lime and is fitted with a scrubber. 35J-12 is also fitted with a scrubber so is assumed to have the same emission concentration as 35J-11. The remaining tanks are assumed to have emissions concentrations similar to emissions from 35J-13. There is one stack on each tank.

Assumptions:

For VOCs and odour, concentration data for 35J-11 was used to calculate emissions rates from 35J-11 and 35J-12; concentration data from 35J-13 was used for all other tanks. For ammonia, 35J-11 concentration data was used for all tanks.

Figure 5: 35J-12 and 35J-13

Table 14: Causticisation Source Information

Source Name	Name	Causticisat	ion		
	Abbreviation	35J			
Physical	No. of Stacks	7			
Characteristics	Height (m)	9.7			
	Stack tip diameter (m)	0.49			
	Location (Easting &	35J-11	398528.228	6357667.915	
	Northing)	35J-12	398518.220	6357672.919	
		35J-13	398528.228	6357677.924	
		35J-14	398518.238	6357682.928	
		35J-15	398528.169	6357688.028	
		35J-24	398562.679	6357679.436	
		35J-25	398578.502	6357679.480	
	Single/Multi-flue	Single	I		
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
CEMS		None			
Gas Stream Characteristics			Average	Peak	
Characteristics	Temp (°C)	35J-11 & 35J-12	62	60 ⁹	
		35J-13, 35J-14, 35J-15, 35J-24 & 35J-25	92	94	
	Exit velocity (m/s)	35J-11	3.5	4.5	
		35J-12	3.1	4.0	
		35J-13, 35J-14 & 35J-15	2.5	3.3	
		35J-24	1.7	2.3	
		35J-25	2.5	3.3	
	Moisture content (%)	35J-11 & 35J-12	21	19	
		35J-13, 35J-14, 35J-15, 35J-24 & 35J-25	67	68	

⁹ This is the temperature at maximum flow rate

	Floor Doto (Dono Nov O/Lor)	05144	4544	0047
	Flow Rate (Dry Nm3/hr)	35J-11	1514	2017
		35J-12	1352	1801
		35J-13	407	528
		35J-14	407	528
		35J-15	407	528
		35J-24	281	364
		35J-25	407	528
	Flow Rate (measured or calculated)	Measured & calculated		
Emission Frequency	Continuous / Intermittent	Continuous	when respective 3	35J tanks are
		operational		
Emission Control(s)	Control 1	Scrubber -	35J-11 and 35J-1	2
	Year of Installation	1984		
	Operating Strategy	Continuous when respective 35J tanks are		
		operational		
	Purpose	Removal of	lime particles fron	n tank emissions

Table 15: Emission Information for Causticisation

Emission Sampling Period	2002-2008		Comment	All sampli	ng was done or	n 35J-11 and	35J-13.		
Gas Stream Characteristics	2018		Assumptions	rates from	For VOCs and odour, concentration data for J-11 was used to calculate emissic rates from J-11 and J-12; concentration data from J13 was used for all other tall For ammonia, J-11 concentration data was used for all tanks. For particulates, data was used for all tanks.				other tanks.
Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	35J-11	11792	28980	843-28980	28	10253
Miscellaneous				35J-13	4573	26570	697-26570	36	4909
Miscellarieous	Ammonia	ECS Method 1.0	mg/m³		44	59	18-59	8	13
	Particulate	USEPA M5	mg/m ³		2.1	3.0	1.2-3.0	3	0.90
VOCs	Acetaldehyde	Modified USEPA	mg/m³	35J-11	10	16	5.2-16	32	3.0
		MTO5		35J-13	21	41	11-41	18	7.3
	Acetone	Modified USEPA	mg/m³	35J-11	39	98	14-98	32	20
		MTO5		35J-13	46	84	8.7-84	19	18
	Benzene	USEPA M18 (tube)	mg/m³		ND	ND	-	12	-
	2-butanone	Modified USEPA	mg/m³	35J-11	5.3	7.9	0.20-7.9	32	1.8
		MTO5		35J-13	6.5	8.1	3.7-8.1	18	1.2
	Formaldehyde	Modified USEPA	mg/m³	35J-11	0.29	0.90	0.10-0.90	32	0.24
		MTO5		35J-13	0.35	0.67	0.17-0.67	18	0.16
	Naphthalene	USEPA M30	mg/m³		0.38	0.91	0.060-0.91	12	0.30
	Ethylbenzene	USEPA M18	mg/m³		ND	ND	-	12	-
	Styrene	USEPA M18	mg/m³		ND	ND	-	12	-
	Toluene	USEPA M18	mg/m³		0.72	2.5	0.070-2.5	12	0.68
	1,2,4 Trimethylbenzene	USEPA M18	mg/m ³		0.82	1.7	0.22-1.7	12	0.52
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³		0.23	0.49	0.080-0.49	12	0.13
	Xylenes	USEPA M18	mg/m³		ND	ND	-	12	-

5.6. Filtration (35A Tanks)

Green liquor from the thickener overflow is filtered in the 35 Filter building to remove any remaining solids after the slurry is settled in the thickener. The filtered green liquor is held in the 35A tank prior to being cooled before precipitation.

Wagerup operates two 35A tanks (35A-1 and 35A-2) interchangeably. All sampling was conducted at 35A-1.

There are two sources of emissions from each tank: firstly, from a vent and secondly, from an overflow pipe. Overflow pipe flows could not be measured so were instead estimated based on the likely frequency and duration of venting. Both sources of emissions are incorporated in the Emission Inventory.

Assumptions:

Concentration data from 35A-1 was used for 35A-2 and both overflow pipes.

The 35A-1 tank was offline during 2018, so there are no emissions from this source.

Figure 6: 35A-1 tank

Table 16: Filtration Source Information

<u> Table 16: Filtration So</u>							
Source Name	Name	Filtration					
	Abbreviation	35A Tanks					
Physical	No. of Stacks	4					
Characteristics	Height (m)	16.5					
	Stack tip diameter (m)	0.60					
	Location (Easting &	35A-1 Vent	398549.553	6357559.268			
	Northing)	35A-2 Vent	398527.590	6357559.268			
		35A-1 O/F	398549.553	6357559.268			
		35A-2 O/F	398527.590	6357559.268			
	Single/Multi-flue	Single					
	Sample Plane (Ideal/Non-ideal)	Non-ideal					
	Source Type (Point/ volume/ Area)	Point					
Regulated Source		No					
CEMS		None					
Gas Stream		Av	Peak				
Characteristics							
Characteristics	Temp (°C)	8	30.1	65.0 ¹⁰			
Characteristics	Temp (°C) Exit velocity (m/s)	35A-2 Vent	1.3	65.0 ¹⁰			
Characteristics	. ` '						
Characteristics	. ` '	35A-2 Vent	1.3	1.7			
Characteristics	Exit velocity (m/s)	35A-2 Vent	1.3 0.45	1.7 7.1			
Characteristics	Exit velocity (m/s) Moisture content (%)	35A-2 Vent 35A-2 O/F	1.3 0.45	1.7 7.1 24 ¹¹			
Characteristics	Exit velocity (m/s) Moisture content (%)	35A-2 Vent 35A-2 O/F 35A-2 Vent	1.3 0.45 37 652 99	1.7 7.1 24 ¹¹ 1069			
Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	35A-2 Vent 35A-2 O/F 35A-2 Vent 35A-2 O/F Measured & C	1.3 0.45 37 652 99	1.7 7.1 24 ¹¹ 1069 1971			

 $^{^{\}rm 10}$ This is the temperature at peak flow

¹¹ This is the moisture at peak flow

Table 17: Emission Information for Filtration

Emission Sampling Period	2002-2007		Comment	All sampling was	done on 35A1.					
Gas Stream Characteristics	2018		Assumptions	It was assumed that concentrations are the same for 35A-1 and 35A-2.						
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation		
	Odour	AS4323.3	OU/wet/Nm ³	32786	114430	760-114430	28	29291		
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	127	255	31-255	8	79		
	Particulate	Not characterised								
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	20	58	5-58	29	11		
	Acetone	Modified USEPA MTO5	mg/m ³	95	201	12-201	29	61		
	Benzene	USEPA M18 (tube)	mg/m³	0.10	0.23	0.040-0.23	12	0.062		
	2-butanone	Modified USEPA MTO5	mg/m³	12	30	2.9-30	29	6.2		
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	29	-		
	Naphthalene	USEPA M18	mg/m³	2.1	5.6	0.080-5.6	12	1.6		
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	14	-		
	Styrene	USEPA M18	mg/m³	ND	ND	-	14	-		
	Toluene	USEPA M18	mg/m³	6.5	13	0.08-13	13	3.4		
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	1.2	3.5	0.080-3.5	14	0.87		
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	0.30	0.85	0.080-0.85	14	0.23		
	Xylenes	USEPA M18	mg/m³	0.34	1.2	0.080-1.2	12	0.39		

5.7. Seed Filtration (44-1 and 44-2)

After precipitation, the medium sized hydrate crystals are removed and sent to the seed filtration building for further processing before being returned as seed into the process.

44-1 is the fine seed filter building; 44-2 is coarse seed filter building. The filter cake from these buildings gets re-slurried and sent back to Row 0 in precipitation for reprocessing. The filtrate is recycled back to 30A as spent liquor.

There are two sources of emissions from each building: firstly, from a main stack (vacuum pump emissions) and secondly, from a hood stack (re-slurry tank exhaust emissions). Building 44-1 has two hood stacks side by side. Building 44-2 has one hood stack.

Seed filtration was sampled in 2014.

Very low flow rates were recorded for these emission sources, some below the detection limit of the method. For flow rates below the detection limit, the detection limit was used.

Assumptions:

Seed filtration has only been sampled once, so it has been assumed that the peak flow is the same as the average.

Table 18: Seed Filtration Source Information

Source Name	tion Source Information Name	Seed Filtration						
	Abbreviation	Building 44						
Physical	No. of Stacks	5						
Characteristics	Height (m)	44-1 Main	35.1					
		44-1 Hood 1	28.3					
		44-1 Hood 2	28.4					
		44-2 Main	35.1					
		44-2 Hood	35.3					
	Stack tip diameter (m)	44-1 Main	1.10					
		44-1 Hood 1	0.60					
		44-1 Hood 2	0.60					
		44-2 Main	1.08					
		44-2 Hood	1.09					
	Location (Easting &	44-1 Main	398701.800	6357026.200				
	Northing)	44-1 Hood 1	398700.400	6357022.400				
		44-1 Hood 2	398700.500	6357021.500				
		44-2 Main	398692.600	6356961.600				
		44-2 Hood	398714.800	6356959.700				
	Single/Multi-flue	Single						
	Sample Plane (Ideal/Non-	Non-ideal						
	ideal)	Non ideal	Non-ideal					
	Source Type (Point/ volume/ Area)	Point	Point					
Regulated Source		No						
CEMS		None						
Gas Stream Characteristics			Average	Peak				
Characteristics	Temp (°C)	44-1 Main	61	61				
		44-1 Hood 1	56	56				
		44-1 Hood 2	56	56				
		44-2 Main	65	65				
		44-2 Hood	41	41				
	Exit velocity (m/s)	44-1 Main	<2	<2				
		44-1 Hood 1	11	11				
		44-1 Hood 2	3	3				
		44-2 Main	3	3				
		44-2 Hood	6	6				
	Moisture content (%)	44-1 Main	20	20				
		44-1 Hood 1	17	17				
		44-1 Hood 2	15	15				
		44-2 Main	23	23				
		44.011	7.0	7.0				
		44-2 Hood	7.3	7.3				

	Flow Rate (Dry Nm3/hr)	44-1 Main	<4200	<4200
		44-1 Hood 1	7800	7800
		44-1 Hood 2	1920	1920
		44-2 Main	5400	5400
		44-2 Hood	16200	16200
	Flow Rate (measured or calculated)	Measured		
Emission Frequency	Continuous / Intermittent	Continuous where	n 44 Tanks online	
Emission Control(s)		None		

Table 19: Emission Information for Seed Filtration

Emission Sampling Period	2014		Comment						
Gas Stream Characteristics	2014		Assumptions						
Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	44-1 Main	1600	1600	1600-1600	2	0
				44-1 Hood 1	1200	1200	1100-1200	2	71
				44-1 Hood 2	1300	1300	1200-1300	2	71
Miscellaneous				44-2 Main	1200	1300	1100-1300	2	141
				44-2 Hood	1100	1100	1100-1100	2	0
	Ammonia	Not characterised							
	Particulate	Not characterised							
VOCs	Acetaldehyde	Modified USEPA	mg/m³	44-1 Main	1.5	1.5	1.4-1.5	2	0.071
		MTO5		44-1 Hood 1	0.40	0.40	0.40-0.40	2	0
				44-1 Hood 2	0.85	0.86	0.84-0.86	2	0.014
				44-2 Main	1.8	1.9	1.6-1.9	2	0.21
				44-2 Hood	0.14	0.17	0.10-0.17	2	0.049
	Acetone	Modified USEPA	mg/m³	44-1 Main	12	15	9.9-15	2	3.6
		MTO5		44-1 Hood 1	2.3	2.3	2.3-2.3	2	0
				44-1 Hood 2	4.1	4.2	4.0-4.2	2	0.14
				44-2 Main	25	26	23-26	2	2.1
				44-2 Hood	0.80	0.80	0.79-0.80	2	0.0071

Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
VOCs	Benzene	USEPA M18 (tube)	mg/m³	44-1 Main	ND	ND	-	2	-
				44-1 Hood 1	ND	ND	-	2	-
				44-1 Hood 2	ND	ND	-	2	-
				44-2 Main	ND	ND	-	2	-
				44-2 Hood	ND	ND	-	2	-
	2-butanone	Modified USEPA	mg/m³	44-1 Main	2.4	2.5	2.3-2.5	2	0.14
		MTO5		44-1 Hood 1	0.57	0.58	0.55-0.58	2	0.021
				44-1 Hood 2	1.1	1.2	1.0-1.2	2	0.16
				44-2 Main	8.8	9.3	8.2-9.3	2	0.78
				44-2 Hood	0.29	0.36	0.22-0.36	2	0.10
	Formaldehyde	Modified USEPA	mg/m³	44-1 Main	ND	ND	-	2	-
		MTO5		44-1 Hood 1	ND	ND	-	2	-
				44-1 Hood 2	ND	ND	-	2	-
				44-2 Main	ND	ND	-	2	-
				44-2 Hood	ND	ND	-	2	-
	Naphthalene	Not characterised							
	Ethylbenzene	Not characterised							
	Styrene	Not characterised							
	Toluene	Not characterised							
	1,2,4 Trimethylbenzene	Not characterised							
	1,3,5 Trimethylbenzene	Not characterised							
	Xylenes	Not characterised							

5.8. Precipitation (Building 45)

The precipitation process provides sufficient time for the hydrate to precipitate out of the solution and provide conditions for low impurity levels. There are 48 precipitators that are divided into two units. Each unit has two banks of 12 tanks, all open top. Liquor and seed enter the first two tanks of each bank, and then flow in series from first tank to last tank in each bank. The precipitators are at different levels so the liquor flows from one tank to another by gravity. The temperature decreases from approximately 82°C in the front tanks to approximately 58°C in the back tanks. This progressive cooling is the process employed in the Bayer process to ensure precipitation.

The open top tanks in the north-east side are the most turbulent and hottest in this area. It is expected that other tanks throughout the series have progressively lower odours as they are cooler and less turbulent. These tanks were included in the 2010 inventory update as a single volume source comprised of 48 individual tanks.

Assumptions:

Tanks are considered as a volume source comprised of 48 individual tanks and noted in the inventory as rows 0 to 5.

The tank flows measured in 2008 are believed to be non-representative of operations, so tank flows were calculated based on the YieldMod heat loss modelling program. Each row has 8 tanks; however, two tanks are generally offline at any given time, so it has been assumed that Rows 2 and 3 only have 7 tanks each.

It has been assumed that peak flows are the same as average flows.

Figure 8: Precipitation

Table 20: Precipitation Source Information

Table 20: Precipitation Sour Source Name	Name	Precipitation			
	Abbreviation	Building 45			
Physical Characteristics	No. of Stacks	48 open tanks	5		
	Height (m)	Row 0	30.2		
		Row 1	29.4		
		Row 2	28.6		
		Row 3	27.8		
		Row 4	26.9		
		Row 5	26.1		
	Stack tip diameter (m)	Row 0	12.5		
		Row 1	11		
		Row 2	11		
		Row 3	11		
		Row 4	11		
		Row 5	11		
	Location (Easting &	Row 0	398640.984	6357022.954	
	Northing)	Row 1	398623.484	6357022.954	
		Row 2	398607.553	6357022.954	
		Row 3	398591.179	6357022.954	
		Row 4	398575.597	6357022.954	
		Row 5	398559.484	6357022.954	
	Single/Multi-flue	Single	l		
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Volume			
Regulated Source		No			
CEMS		None			
Gas Stream Characteristics		Av	erage	Peak	
	Temp (°C)	Row 0	31	31	
		Row 1	31	31	
		Row 2	27	27	
		Row 3	24	24	
		Row 4	24	24	
		Row 5	24	24	
	Exit velocity (m/s)	N/A – modelled as volume source			

	35 1 4 40()			
	Moisture content (%)	Row 0	45.7	45.7
		Row 1	45.7	45.7
		Row 2	40.5	40.5
		Row 3	29.0	29.0
		Row 4	29.0	29.0
		Row 5	29.0	29.0
	Flow Rate (Dry	Row 0	35400	35400
	Nm3/hr)	Row 1	27416	27416
		Row 2	25221	25221
		Row 3	26971	26971
		Row 4	30824	30824
		Row 5	30824	30824
	Flow Rate (measured or calculated)	Calculated		
Emission Frequency	Continuous / Intermittent	Continuous w	hen precipitation t	anks are online
Emission Control(s)		None		

Table 21: Emission Information for Precipitation

Emission			Comment	· ·		•	bove the surface of t		
Sampling Period	2008						k lip to the tank conte campling train was se	•	
						•	ng emitted from the t	•	
Gas Stream Characteristics	2014		Assumptions						
Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	Not characterised							
Miscellaneous	Ammonia	Not characterised							
	Particulate	Not characterised							
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³		ND	-	-	2	-
	Acetone	USEPA Method 0030	mg/m³	Rows 0-1	0.069	0.12	0.018-0.12	2	0.072
				Row 2	0.17	0.18	0.15-0.18	2	0.021
				Rows 3-5	0.063	0.076	0.050-0.076	2	0.018
	Benzene	USEPA Method 0030	mg/m³	Rows 0-1	0.0031	0.0039	0.0024-0.0039	2	0.0011
				Row 2	ND	-	-	2	-
				Rows 3-5	ND	-	-	2	-
	2-butanone	USEPA Method 0030	mg/m³	Tank 41	0.021	0.036	0.0060-0.036	2	0.021
				Tank 42	0.045	0.046	0.044-0.046	2	0.0014
				Tank 44	0.018	0.021	0.015-0.021	2	0.0042
	Formaldehyde	USEPA Method 0030	mg/m³	Tank 41	ND	ND	-	2	-
				Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-

Compound Class	Compound	Method	Unit		Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
VOCs	Naphthalene	USEPA Method 0030	mg/m³	Tank 41	ND	ND	-	2	-
				Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-
	Ethylbenzene	USEPA Method 0030	mg/m³	Tank 41	0.0037	0.0051	0.0024-0.0051	2	0.0019
				Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-
	Styrene	USEPA Method 0030	mg/m³	Tank 41	0.0029	0.0035	0.0024-0.0035	2	0.00081
				Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-
	Toluene	USEPA Method 0030	mg/m³	Tank 41	0.0059	0.0087	0.0031-0.0087	2	0.0040
				Tank 42	0.015	0.019	0.011-0.019	2	0.0057
				Tank 44	0.0043	0.0048	0.0038-0.0048	2	0.00071
	1,2,4	USEPA Method 0030	mg/m³	Tank 41	ND	ND	-	2	-
	Trimethylbenzene			Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-
	1,3,5	USEPA Method 0030	mg/m³	Tank 41	ND	ND	-	2	-
	Trimethylbenzene			Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-
	Xylenes	USEPA Method 0030	mg/m³	Tank 41	ND	ND	-	2	-
				Tank 42	ND	ND	-	2	-
				Tank 44	ND	ND	-	2	-

5.9. Precipitation Cooling Towers (Building 45K)

Parts of the Bayer process require the cooling of hot caustic liquor, slurries, or calcined alumina. The cooling is undertaken by passing cooled water through <u>non-contact</u> (indirect) heat exchangers. The water that is used for process cooling gains heat and is returned (recirculated) to the cooling towers, where it is cooled again and re-used for process cooling.

The cooling towers are evaporative coolers which cool water to near ambient temperature. Some of the water fed to the cooling tower evaporates into the air (cooling the water in the process). The remaining water circulates through the tower and is used again for indirect cooling. Each evaporative cooling tower requires both make-up water to replace evaporating water, and a blowdown stream to limit the concentration of substances which can build up due to the recirculation of water within the tower. Volatile organic compounds in the make-up water that is fed to the cooling tower can be stripped into the cooling tower air and discharged to atmosphere.

Several cooling towers are in operation at Wagerup. The quality of the make-up water is considered to be a key determinant of emissions from cooling towers. Those cooling towers using Lower Dam water as make-up water and having significant flows (45K Cooling Towers 1, 2 & 3) were included as point sources for the emission inventory. Cooling Tower 45K2 was selected for sampling because it has sampling ports and safe access, and its emissions are assumed to be representative of other towers using Lower Dam make-up water.

Emissions from cooling towers at Buildings 25, 30, 110, 48, 47 and 984Y were considered to be insignificant because they are small and use Upper Dam¹² water as make-up water.

Data for the Calcination Cooling Towers is provided in **Section 5.16**. These cooling towers mostly use Upper Dam water as make-up water, but occasionally use Lower Dam water, and so have been included in the emission inventory with a factor applied to account for emissions only when Lower Dam water is used.

Emissions from the 45K Cooling Towers have proven difficult to characterise due to source characteristics (high moisture, low emission concentrations, non-ideal sample plane due to large diameter and proximity to flow disturbance) and methodology limitations. This has resulted in concerns about the reliability and credibility of the emission data for this source. A separate review of VOC emission estimates from the 45K cooling towers has been conducted (Alcoa, 2019). The approach outlined in this review has been applied in this Emission Inventory.

¹² The Upper Dam water source is 'fresh surface water' sourced from rainfall runoff and Yalup Brook. This is used predominantly as the Refinery potable water supply.



Figure 9: Precipitation Cooling Towers

Table 22: Precipitation Cooling Towers Source Information

Source Name	Name		on Cooling Towers		
	Abbreviation	45K1, 45K	2, 45K3		
Physical	No. of Stacks	3			
Characteristics	Height (m)	45K1	9.0		
		45K2	17.5		
		45K3	17.5		
	Stack tip diameter (m)	45K1	7.25		
		45K2	7.32		
		45K3	7.32		
	Location (Easting &	45K1	398621.788	6357145.378	
	Northing)	45K2	398642.938	6357148.422	
		45K3	398642.938	6357148.422	
	Single/Multi-flue	Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
	None				
CEMS Gas Stream		None			
			Average	Peak	
Gas Stream	Temp (°C)		Average 49	Peak 49	
Gas Stream	Temp (°C)				
Gas Stream	Temp (°C)	45K1	49	49	
Gas Stream	Temp (°C) Exit velocity (m/s)	45K1 45K2	49 49	49 49	
Gas Stream		45K1 45K2 45K3	49 49 49	49 49 49	
Gas Stream		45K1 45K2 45K3 45K1	49 49 49 9.4	49 49 49 9.4	
Gas Stream		45K1 45K2 45K3 45K1 45K2	49 49 49 9.4 13	49 49 49 9.4 13	
Gas Stream	Exit velocity (m/s)	45K1 45K2 45K3 45K1 45K2 45K3	49 49 49 9.4 13 14	49 49 49 9.4 13 14	
Gas Stream	Exit velocity (m/s)	45K1 45K2 45K3 45K1 45K2 45K3 45K1	49 49 49 9.4 13 14	49 49 49 9.4 13 14	
Gas Stream	Exit velocity (m/s)	45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2	49 49 49 9.4 13 14 12	49 49 49 9.4 13 14 12 12	
Gas Stream	Exit velocity (m/s) Moisture content (%)	45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2	49 49 49 9.4 13 14 12 12 12 12 12 1509962	49 49 49 9.4 13 14 12 12 12 12 12 1045812 1509962	
Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr)	45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2 45K3 45K1	49 49 49 9.4 13 14 12 12 12 12 12	49 49 49 9.4 13 14 12 12 12 12 12	
Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated)	45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2	49 49 49 9.4 13 14 12 12 12 12 12 1509962 1550049	49 49 49 9.4 13 14 12 12 12 12 12 1045812 1509962	
Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2 45K3 45K1 45K2 45K3 Calculated	49 49 49 9.4 13 14 12 12 12 12 12 1509962 1550049	49 49 49 9.4 13 14 12 12 12 12 1045812 1509962 1550049	

Table 23: Emission Information for Precipitation Cooling Towers

Emission Sampling Period	2001-2007		Comment	All data is from 45K2.				
Gas Stream Characteristics	2018		Assumptions	45K1 and 45K3 have the same concentrations as 45K2.				
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	256	724	74-724	11	250
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	ND	ND	-	4	-
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5 (ECS M6)	mg/m³	ND	ND	-	44	-
	Acetone	USEPA Method 0030 (VOST)	mg/m³	0.038	3.5	0.024-3.5	17	1.1
	Benzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	12	-
	2-butanone	USEPA Method 0030 (VOST)	mg/m³	0.011	0.70	0.0040-0.70	12	0.20
	Formaldehyde	Modified USEPA MTO5 (ECS M6)	mg/m³	0.26	0.58	0.20-0.58	44	0.11
	Naphthalene	USEPA Method 0030 (VOST)	mg/m³	0.0032	0.016	0.0018-0.016	13	0.0039
	Ethylbenzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
	Styrene	USEPA Method 0030 (VOST)	mg/m³	0.0018	0.0080	0.0010-0.0080	13	0.0018
	Toluene	USEPA Method 0030 (VOST)	mg/m³	0.0021	0.0090	0.0010-0.0090	13	0.0021
	1,2,4 Trimethylbenz ene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
	1,3,5 Trimethylbenz ene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
	Xylenes	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-

5.10. Oxalate Kiln RTO Stack (Building 47)

The principle of Building 47 is to extract sodium oxalate from the spent liquor by a crystallisation and filtration process. Sodium oxalate is then transferred to the oxalate kiln for combustion, with gaseous vapours from the kiln process directed to a dedicated Regenerative Thermal Oxidiser (RTO) for treatment prior to being released into the atmosphere.

The oxalate kiln was recommissioned under works approval W4587/2009/1, with commissioning and verification conducted in 2012-2013. Data from the quarterly RTO stack testing since commissioning are included in the 2018 emission inventory.

Figure 10: Oxalate Kiln RTO Stack

Table 24: Oxalate Kiln Source Information

Characteristics Height (m) 36.8 Stack tip diameter (m) 1.0 Location (Easting & Northing) 398224.93 6357607.97 Single Sample Plane (Ideal/Nonized) Ideal Source Type (Point/ volume/ Area) Point Regulated Source Yes CEMS 1 Dust concentration monitor Indicative particulate concentration Purpose Indicative of thermal destruction of VOCs CEMS 2 RTO temperature monitor Purpose Indicative of thermal destruction of VOCs Gas Stream Characteristics Average Peak Temp (°C) 101 130 Exit velocity (m/s) 18 27 Moisture content (%) 6.4 9.4 Flow Rate (Dry Nm3/hr) 34650 46902 Flow Rate (measured or calculated)	i abie 24: Oxalate Kiln				
Physical Characteristics Height (m)	Source Name	Name	Oxalate Kiln		
Characteristics Height (m) 36.8 Stack tip diameter (m) 1.0 Location (Easting &) 398224.93 6357607.97 Single/Multi-flue Single Sample Plane (Ideal/Non- ideal) Source Type (Point/ volume/ Area) Point Furpose Indicative particulate concentration Purpose Indicative particulate concentration Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 4 Peak Temp ("C) 101 130 Exit velocity (m/s) 18 27 Moisture content (%) 6.4 9.4 Flow Rate (Interpretation of Peak Peak Flow Rate (Interpretation of Peak Peak Peak Centrol 1 Regenerative thermal oxidiser (RTO) Purpose Purpose Continuous While oxalate kiln operational Purpose Purpose Continuous When oxalate kiln operational Purpose Purpose Peak Peak Peak Control 2 Wet scrubber Purpose Purpose Particulate removal Purpose Particulate removal Peak P		Abbreviation	Building 47		
Stack tip diameter (m) 1.0	Physical	No. of Stacks	1		
Location (Easting & Northing) 398224.93 6357607.97	Characteristics	Height (m)	36.8		
Northing Single Single		Stack tip diameter (m)	1.0		
Sample Plane (Ideal/Non-ideal) Ideal		` _	398224.93	6357607.97	
Ideal) Source Type (Point/ volume/ Area) Point		Single/Multi-flue	Single		
Regulated Source CEMS CEMS 1 Purpose Indicative particulate concentration CEMS 2 RTO temperature monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs Gas Stream Characteristics Temp (°C) Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Continuous / Intermittent Continuous Continuous Continuous Purpose Thermal destruction of VOCs While oxalate kiln operational Purpose Thermal destruction of VOCs Thermal destruction of VOCs Control 2 When oxalate kiln operational Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous Purpose Purpose Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational When oxalate kiln operational When oxalate kiln operational Purpose When oxalate kiln operational			Ideal		
CEMS 1 Purpose Indicative particulate concentration CEMS 2 RTO temperature monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs CEMS 3 CO monitor Purpose Indicative of thermal destruction of VOCs Average Peak Temp (°C) 101 130 Exit velocity (m/s) 18 27 Moisture content (%) 6.4 9.4 Flow Rate (Dry Nm3/hr) 34650 46902 Flow Rate (Measured or calculated) Emission Frequency Continuous / Intermittent Continuous While oxalate kiln operational Emission Control(s) Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational Purpose Particulate removal Control 3 Mercury treatment system Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational			Point		
Purpose Indicative particulate concentration	Regulated Source		Yes		
CEMS 2 RTO temperature monitor	CEMS	CEMS 1	Dust concentration monito	r	
Purpose Indicative of thermal destruction of VOCs		Purpose	Indicative particulate conce	entration	
CEMS 3 CO monitor		CEMS 2	RTO temperature monitor		
Purpose Indicative of thermal destruction of VOCs		Purpose	Indicative of thermal destru	uction of VOCs	
Characteristics		CEMS 3	CO monitor		
Characteristics Temp (°C) Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Emission Frequency Continuous / Intermittent Continuous Continuous Control 1 Regenerative thermal oxidiser (RTO) Year of Installation Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Particulate removal Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational When oxalate kiln operational When oxalate kiln operational Operating Strategy Continuous When oxalate kiln operational		Purpose	Indicative of thermal destru	uction of VOCs	
Exit velocity (m/s) 18 27	Gas Stream Characteristics		Average	Peak	
Moisture content (%) 6.4 9.4 Flow Rate (Dry Nm3/hr) 34650 46902 Flow Rate (measured or calculated) Measured			101	130	
Flow Rate (Dry Nm3/hr) 34650 46902 Flow Rate (measured or calculated) Emission Frequency Continuous / Intermittent Continuous Continuous Continuous Measured Continuous While oxalate kiln operational Regenerative thermal oxidiser (RTO) Year of Installation Purpose Control 2 Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Continuous When oxalate kiln operational Purpose Particulate removal Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational When oxalate kiln operational		Exit velocity (m/s)	18	27	
Flow Rate (measured or calculated) Emission Frequency Continuous / Intermittent Continuous Continuous Regenerative thermal oxidiser (RTO) Year of Installation Operating Strategy Continuous Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Operating Strategy Continuous Purpose Particulate removal Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational When oxalate kiln operational		Moisture content (%)	6.4	9.4	
Continuous / Intermittent Continuous While oxalate kiln operational		Flow Rate (Dry Nm3/hr)	34650	46902	
Emission Control(s) Control 1 Regenerative thermal oxidiser (RTO) Year of Installation Operating Strategy Continuous Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous When oxalate kiln operational When oxalate kiln operational Purpose Purpose Particulate removal Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational Operating Strategy Continuous When oxalate kiln operational		•	Measured		
Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation Operating Strategy Continuous When oxalate kiln operational Purpose Particulate removal Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational Operating Strategy Continuous When oxalate kiln operational	Emission Frequency	Continuous / Intermittent	Continuous		
Continuous When oxalate kiln operational	Emission Control(s)	Control 1	Regenerative thermal oxid	iser (RTO)	
Purpose Thermal destruction of VOCs Control 2 Wet scrubber Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational Purpose Particulate removal Control 3 Mercury treatment system Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational		Year of Installation	2012		
Control 2 Year of Installation Operating Strategy Continuous Purpose Particulate removal Control 3 Mercury treatment system Year of Installation Operating Strategy Continuous When oxalate kiln operational Operating Strategy Continuous When oxalate kiln operational		Operating Strategy	Continuous		
Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational Purpose Particulate removal Control 3 Mercury treatment system Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational		Purpose	Thermal destruction of VO	Cs	
Operating Strategy Continuous When oxalate kiln operational		Control 2	Wet scrubber		
Purpose Particulate removal Control 3 Mercury treatment system Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational		Year of Installation	2012		
Control 3 Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational		Operating Strategy	Continuous		
Year of Installation 2012 Operating Strategy Continuous When oxalate kiln operational		Purpose	Particulate removal		
Operating Strategy Continuous When oxalate kiln operational		Control 3	Mercury treatment system		
operational		Year of Installation	2012		
Purpose Reduction of mercury in kiln stack emissions		Operating Strategy	Continuous		
		Purpose	Reduction of mercury in kil	n stack emissions	

Table 25: Emission Information for Oxalate kiln

Emission Sampling Period	Q4 2012 – 2018		Comment	Oxalate kiln was recommissioned with RTO in 2012.				
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Cambustian	NOx	USEPA Method 7E	mg/m³	33	49	18-49	25	8.6
	CO	USEPA Method 10	mg/m³	5.5	24	1.0-24	25	4.9
1 Toddoto	Assumption Assumptions Assumptions	1.0-20	25	4.2				
	Odour	AS 4323.3	OU/wet/Nm ³	828	6600	20-6600	25	1431
Miscellaneous	Ammonia	Not characterised						
	Particulate	USEPA M5 or 17	mg/m³	0.91	2.8	0.50-2.8	25	0.61
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	25	-
	Acetone	Modified USEPA MTO5	mg/m³	0.46	4.9	0.045-4.9	25	1.1
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	25	-
	2-butanone	Modified USEPA MTO5	mg/m³	ND	ND	-	25	-
	Formaldehyde	Modified USEPA MTO5	mg/m³	0.083	0.34	0.040-0.34	25	0.064
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	Not characterised						
	, , ,	Not characterised						
	1,3,5 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

5.11. Oxalate Filter Press Building Stack

The oxalate filter press building stack receives all emissions from the oxalate filter press vacuum pumps. When the oxalate kiln RTO is online, emissions are drawn to the RTO, so there are no emissions from the filter press building stack.

The Oxalate filter press building stack has only been sampled once in 2017.

Assumptions:

Design specifications have been used for average and peak flow rates. A factor of 32% has been applied to the average flow rate to account for the time when the oxalate kiln RTO was offline (hence gases were being directed to the filter press building stack).

Figure 11: Oxalate filter press building stack (47K1)

Table 26: Oxalate filter press building stack Source Information

Table 26: Oxalate filter press building stack	Source Information				
Source Name Name	Oxalate filter press	building stack			
Abbreviation	47K1				
Physical No. of Stacks	1				
Characteristics Height (m)	35.0				
Stack tip diameter (m)	0.84				
Location (Easting & Northing)	398248.76	6357605.82			
Single/Multi-flue	Single				
Sample Plane (Ideal/Non-ideal)	Ideal				
Source Type (Point/ volume/ Area)	Point				
Regulated Source	No	No			
CEMS	None				
Gas Stream Characteristics	Average	Peak			
Temp (°C)	52	52			
Exit velocity (m/s)	3.2	13.1			
Moisture content (%)	8.8	8.8			
Flow Rate (Dry Nm3/hr	4838	20000			
Flow Rate (measured of calculated)	Measured				
Emission Frequency Continuous / Intermittent	Intermittent	When RTO offline			

Table 27: Emission Information for Oxalate filter press building stack

Emission Sampling Period	2017		Comment					
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS 4323.3	OU/wet/Nm ³	960	1100	830-1100	2	191
Miscellaneous	Ammonia	Ektimo (ETC) 330	mg/m³	37	42	32-42	2	7.1
	Particulate	Not characterised						
VOCs	Acetaldehyde	Ektimo (ETC) 390	mg/m³	0.34	0.40	0.28-0.40	2	0.085
	Acetone	Ektimo (ETC) 390	mg/m³	5.4	5.9	4.8-5.9	2	0.78
	Benzene	Not characterised	mg/m³					
	2-butanone	Ektimo (ETC) 390	mg/m³	0.50	0.55	0.44-0.55	2	0.078
	Formaldehyde	Ektimo (ETC) 390	mg/m³	ND	ND	-	2	-
	Naphthalene	Not characterised						
	Ethylbenzene	USEPA M18	mg/m³	0.019	0.023	0.015-0.023	2	0.0057
	Styrene	Not characterised						
	Toluene	USEPA M18	mg/m³	0.047	0.047	0.046-0.047	2	0.00071
	1,2,4 Trimethylbenzen e	Not characterised						
	1,3,5 Trimethylbenzen e	Not characterised						
	Xylenes	USEPA M18	mg/m³	ND	ND	-	2	-

5.12. Liquor Burner (Building 48)

At Wagerup Refinery the Liquor Burner is required to control the build-up of organic compounds in recirculating process liquor. These compounds originate from organic material in bauxite and, once formed, reduce the precipitation of aluminium trihydrate from liquor. This reduces plant yield, so the alumina production process becomes inefficient.

The Liquor Burner kiln gases report to an Electrostatic Precipitator (ESP), dehumidifier and RTO for particulate and VOC treatment prior to release through the Liquor Burner stack. The Liquor Burner RTO was commissioned in August 2006. Concentration and mass emission data in the inventory include data collected from Q4 2006 to 2018 as data collected prior to this are not considered representative of current emissions.

Emissions from the Liquor Burner are vented from an individual stack contained in the multi-flue¹³. The Liquor Burner is monitored quarterly under the environmental licence L6217/1983.

Figure 12: (a) Liquor burner stack (in multi-flue) and (b) Liquor burner sampling point

¹³ The multi-flue consists of five individual stacks: one for each of the three Calciners, one for the Liquor Burner and one for Calciner 1-3 Low Volume Vent emissions.

Table 28: Liquor Burner Stack (Building 48) Source Information

Source Name	er Stack (Building 48) Source Name	Liquor Burning		
	Abbreviation	Building 48		
Physical	No. of Stacks	1		
Characteristics	Height (m)	100		
	Stack tip diameter (m)	1.1		
	Location (Northing & Easting)	398,317.940	6,357,200.422	
	Single/Multi-flue	Multi-flue		
	Sample Plane (Ideal/Non-ideal)	Ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		Yes		
	CEMS 1	Dust Concentration Monito	r	
	Purpose	Indicative particulate conce	entration	
	CEMS 2	RTO temperature		
	Purpose	Indicative of thermal destru	uction of VOCs	
	CEMS 3	CO Monitor		
	Purpose	Indicative of thermal destruction of VOCs		
Gas Stream Characteristics		Average	Peak	
	Temp (°C)	47	67	
	Exit velocity (m/s)	19	29	
	Moisture content (%)	5.2	7.6	
	Flow Rate (Dry Nm3/hr)	52477	73672	
	Flow Rate (measured or calculated)	Calculated		
Emission Frequency	Continuous / Intermittent	Continuous	When liquor burning kiln operational	
Emission Control(s)	Control 1	Regenerative Thermal Oxid	diser (RTO)	
	Year of Installation	2006		
	Operating Strategy	Continuous	When liquor burning kiln operational	
	Purpose	Thermal destruction of VO	Cs and CO	
	Control 2	Dehumidifier		
	Year of Installation	2001		
	Operating Strategy	Continuous	When liquor burning kiln operational	
	Purpose	Particulate removal		
	Control 3	Electrostatic precipitator		
	Year of Installation	1996		
	Operating Strategy	Continuous	When liquor burning kiln operational	
	Purpose	Particulate removal		

Table 29: Emission Information for Liquor Burner Stack

Emission Sampling Period	Q4 2006 to 2018		Comment	Data collected prior to RTO installation has been excluded since it is indicative of current emissions.			e it is not	
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Occasion of the	NO _x	USEPA Method 7E	mg/m³	138	259	46-259	48	40
Combustion Products	CO	USEPA Method 10	mg/m³	15	61	2.5-61	48	12
Troducto	SO ₂	USEPA Method 6C	mg/m³	1.6	11	1.0-11	48	1.5
	Odour	AS4323.3	OU/wet/Nm ³	3230	13700	474-13700	60	2816
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	0.50	1.1	0.045-1.1	9	0.33
	Particulate	USEPA M5 or 17	mg/m³	1.7	5.9	0.37- 5.9	48	1.3
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	0.16	1.9	0.050-1.9	48	0.26
	Acetone	Modified USEPA MTO5	mg/m³	0.85	21	0.050-21	46	3.2
	Benzene	USEPA M18 (tube)	mg/m³	0.074	0.26	0.0050 - 0.26	48	0.053
	2-butanone	Modified USEPA MTO5	mg/m³	0.12	0.54	0.050 - 0.54	48	0.087
	Formaldehyde	Modified USEPA MTO5	mg/m³	0.17	1.2	0.050 – 1.2	48	0.18
	Naphthalene	USEPA M18	mg/m³	0.013	0.034	0.0035-0.034	12	0.013
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-
	Styrene	USEPA M18	mg/m³	ND	ND	-	12	-
	Toluene	USEPA M18	mg/m³	0.015	0.036	0.0036-0.036	12	0.013
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-
	Xylenes	USEPA M18	mg/m³	0.0057	0.0090	0.0048-0.0090	12	0.0016

5.13. Liquor Burning Slurry Mixing Tank (48A Tank)

The 48A Slurry Mixing Tank is a small enclosed vessel with a single vent. It is a flat-bottomed steel tank with an agitator inside. This was identified as a potential emission source in 2013, and sampling was performed in 2014.

Very low flow rates were recorded for this emission source, some below the detection limit of the method. For flow rates below the detection limit, the detection limit was used.

Assumptions:

The 48A tank has only been sampled once, so it has been assumed that the peak flow is the same as the average.

Figure 13: Liquor Burning Slurry Mixing Tank (48A)

Table 30: Liquor Burning Slurry Mixing Tank Exhaust Source Information

Source Name	Name	Liquor Burning Slurry Mixing Tank		
	Abbreviation	48A		
Physical	No. of Stacks	1		
Characteristics	Height (m)	9.5		
	Stack tip diameter (m)	0.30		
	, , ,	0.30		
	Location (Easting & Northing)	398276.5	6357160.2	
	Single/Multi-flue Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		No		
Regulated Source		No		
Regulated Source CEMS		No None		
		_	Peak	
CEMS Gas Stream	Temp (°C)	None	Peak 75	
CEMS Gas Stream	Temp (°C) Exit velocity (m/s)	None Average		
CEMS Gas Stream		None Average 75	75	
CEMS Gas Stream	Exit velocity (m/s)	None Average 75 <2	75 <2	
CEMS Gas Stream	Exit velocity (m/s) Moisture content (%)	None Average 75 <2 35	75 <2 35	
CEMS Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	None Average 75 <2 35 <240	75 <2 35	

Table 31: Emission Information for Liquor Burning Slurry Mixing Tank Exhaust

Emission Sampling Period	2014		Comment					
Gas Stream Characteristics	2014		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	6800	6800	6800-6800	2	0
Miscellaneous	Ammonia	Not characterised						
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	1.4	1.4	1.4-1.4	2	0.0
	Acetone	Modified USEPA MTO5	mg/m³	15	16	14-16	2	1.4
	Benzene	USEPA M18 (tube)	mg/m³	0.60	0.61	0.58-0.61	2	0.021
	2-butanone	Modified USEPA MTO5	mg/m³	5.3	5.7	4.9-5.7	2	0.57
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	2	-
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	Not characterised						
	1,2,4 Trimethylbenzene	Not characterised						
	1,3,5 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

5.14. Calciners (Building 50)

Calcination is a dehydration step involving conversion of aluminium trihydrate (Al₂O₃.3H₂O) to alumina (Al₂O₃). This is done by heating the hydrate in a fluidised bed furnace at approximately 1000°C to drive off the water of crystallisation to form alumina.

Four calciners were in operation in 2018. The emissions from Calciners 1, 2 and 3 are vented from individual stacks contained in the multi-flue¹⁴. The emissions from Calciner 4 are vented from a standalone stack.

Calciners are monitored quarterly under the environmental licence L6217/1983 and data have been included in the 2018 updated emission inventory.

Odour emissions from calcination were treated slightly differently to other sources. A summary is provided in **Section 5.14.1**.

Assumptions:

For ammonia and naphthalene, Calciner 3 concentration data was used for all calciners. For ethylbenzene, styrene, toluene, xylenes, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, Calciner 3 concentration data was used for Calciners 1 and 2.

Figure 14: (a) Calciner 1-3 multi-flue stack and (b) Calciner 4 stack

¹⁴ The multi-flue consists of five individual stacks: one for each of the three Calciners, one for the Liquor Burner and one for Calciner 1-3 Low Volume Vent emissions.

Table 32: Calciner 1 Source Information

Table 32: Calciner 1 So Source Name	Name	Calciner 1		
Source Maine	Abbreviation	50-1		
B				
Physical Characteristics	No. of Stacks	1		
Characteristics	Height (m)	100		
	Stack tip diameter (m)	1.90		
	Location (Easting & Northing)	398317.940	6357200.422	
	Single/Multi-flue	Multi-flue		
	Sample Plane (Ideal/Non-ideal)	Ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		Yes		
CEMS	CEMS 1	Dust concentration monitor		
	Purpose	Indicator of particulate cor	centration	
	CEMS 2	Furnace temperature mon	itor	
	Purpose	Indicator of VOC destruction		
Gas Stream Characteristics		Average	Peak	
	Temp (°C)	172	187	
	Exit velocity (m/s)	20	29	
	Moisture content (%)	50	57	
	Flow Rate (Dry Nm3/hr)	64625	75418	
	Flow Rate (measured or calculated)	Calculated		
Emission Frequency	Continuous / Intermittent	Continuous		
Emission Control(s)	Control 1	100m multi-flue stack		
	Year of Installation	2002		
	Operating Strategy	Continuous	When calciner operational	
	Purpose	Improved dispersion of cal	ciner emissions	
	Control 2	Electrostatic precipitator		
	Year of Installation	1984		
	Operating Strategy	Continuous	When calciner operational	
	Purpose	Particulate removal	I	
		I .		

Table 33: Calciner 2 Source Information

Table 33: Calciner 2 So Source Name	Name	Calciner 2		
Course Hume	Abbreviation	50-2		
Physical	No. of Stacks	1		
Characteristics				
	Height (m)	100		
	Stack tip diameter (m)	1.90		
	Location (Easting & Northing)	398317.940 6357200.42		
	Single/Multi-flue	Multi-flue		
	Sample Plane (Ideal/Non-ideal)	Ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		Yes		
CEMS	CEMS 1	Dust concentration monitor		
	Purpose	Indicator of particulate con	centration	
	CEMS 2	Furnace temperature mon	itor	
	Purpose	Indicator of VOC destruction		
Gas Stream Characteristics		Average	Peak	
	Temp (°C)	180	198	
	Exit velocity (m/s)	22	31	
	Moisture content (%)	49	56	
	Flow Rate (Dry Nm3/hr)	68141	80859	
	Flow Rate (measured or calculated)	Calculated	,	
Emission Frequency	Continuous / Intermittent	Continuous		
Emission Control(s)	Control 1	100m multi-flue stack		
	Year of Installation	2002		
	Operating Strategy	Continuous	When calciner operational	
	Purpose	Improved dispersion of cal	ciner emissions	
	Control 2	Electrostatic precipitator ation 1984		
	Year of Installation			
	Operating Strategy	Continuous	When calciner operational	
	Purpose	Particulate removal	<u>I</u>	
		1		

Table 34: Calciner 3 Source Information

Table 34: Calciner 3 So	urce Information			
Source Name	Name	Calciner 3		
	Abbreviation	50-3		
Physical	No. of Stacks	1		
Characteristics	Height (m)	100		
	Stack tip diameter (m)	2.15		
	Location (Easting & Northing)	398317.940	6357200.422	
	Single/Multi-flue	Multi-flue		
	Sample Plane (Ideal/Non-ideal)	Ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		Yes		
CEMS	CEMS 1	Dust concentration monitor		
	Purpose	Indicator of particulate con	centration	
	CEMS 2	Furnace temperature mon	itor	
	Purpose	Indicator of VOC destruction	on	
Gas Stream Characteristics		Average	Peak	
	Temp (°C)	213	220	
	Exit velocity (m/s)	23	30	
	Moisture content (%)	40	46	
	Flow Rate (Dry Nm3/hr)	98733	117000	
	Flow Rate (measured or calculated)	Calculated		
Emission Frequency	Continuous / Intermittent	Continuous		
Emission Control(s)	Control 1	100m multi-flue stack		
	Year of Installation	2002		
	Operating Strategy	Continuous	When calciner operational	
	Purpose	se Improved dispersion of calciner emissions Electrostatic precipitator		
	Control 2			
	Year of Installation			
	The state of the s			
	Operating Strategy	Continuous	When calciner operational	
	Operating Strategy Purpose	Continuous Particulate removal		

Table 35: Calciner 4 Source Information

Source Name	Name	Calciner 4			
	Abbreviation	50-4			
Physical	No. of Stacks	1			
Characteristics	Height (m)	48.8			
	Stack tip diameter (m)	2.35			
	Location (Easting & Northing)	398396.031	6357099.742		
	Single/Multi-flue	Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		Yes			
CEMS	CEMS 1	Dust concentration monitor			
	Purpose	Indicator of particulate concentration			
	CEMS 2	Furnace temperature monitor			
	Purpose	Indicator of VOC destruction			
Gas Stream Characteristics		Average	Peak		
	Temp (°C)	150	169		
	Exit velocity (m/s)	22	30		
	Exit velocity (m/s) Moisture content (%)	22 47	30 55		
	Moisture content (%) Flow Rate (Dry Nm3/hr)				
	Moisture content (%)	47	55		
Emission Frequency	Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	47 116528	55		
Emission Frequency Emission Control(s)	Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated)	47 116528 Calculated	55		
•	Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Continuous / Intermittent	47 116528 Calculated Continuous	55		
	Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Continuous / Intermittent Control 1	47 116528 Calculated Continuous	55		

Table 36: Emission Information for Calciner 1 Stack

Emission Sampling Period	2002-2018 2018		Comment	Most data are from 2005-2018. For compounds not measured in regular compliance sampling, data dates to 2002. Ammonia, naphthalene, ethylbenzene, styrene, toluene, xylenes,1,2,4-trimethylbenzene and 1,3,5 trimethylbenzene data are from Calciner 3.				
Gas Stream Characteristics								
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Carabustian	NOx	USEPA Method 7E	mg/m³	95	398	8.0-398	63	48
Combustion Products	CO	USEPA Method 10	mg/m³	160	653	15-653	63	98
	SO ₂	USEPA Method 6C	mg/m³	7.1	66	1.0-66	62	10
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	2.7	5.3	0.40-5.3	16	1.3
	Particulate	USEPA M5 or 17	mg/m³	33	72	4.8-72	63	19
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	4.0	10	0.19-10	63	1.5
	Acetone	Modified USEPA MTO5	mg/m³	2.0	10	0.16-10	62	1.4
	Benzene	USEPA M18 (tube)	mg/m³	0.27	1.0	0.0012-1.0	63	0.18
	2-butanone	Modified USEPA MTO5	mg/m³	0.19	0.80	0.050-0.80	63	0.11
	Formaldehyde	Modified USEPA MTO5	mg/m³	4.5	17	0.19-17	63	2.6
	Naphthalene	USEPA M18	mg/m³	0.012	0.045	0.0024-0.045	12	0.016
	Ethylbenzene	USEPA M18	mg/m³	0.0041	0.0080	0.0024-0.0080	12	0.0019
	Styrene	USEPA M18	mg/m³	0.0071	0.017	0.0036-0.017	12	0.0049
	Toluene	USEPA M18	mg/m³	0.029	0.086	0.0036-0.086	12	0.030
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-
	Xylenes	USEPA M18	mg/m³	0.018	0.045	0.0050-0.045	12	0.014

Table 37: Emission Information for Calciner 2 Stack

Emission Sampling Period	2002-2018		Comment		e from 2005-201 ampling, data da	8. For compound ates to 2002.	s not measu	ed in regular	
	2002-2016			· · · · · · · · · · · · · · · · · · ·		benzene, styrene rimethylbenzene d			
Gas Stream Characteristics	2018		Assumptions						
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation	
Cambustian	NOx	USEPA Method 7E	mg/m³	89	163	19-163	63	30	
Combustion Products	СО	USEPA Method 10	mg/m³	151	910	10-910	63	134	
110000	SO ₂	USEPA Method 6C	mg/m³	4.5	49	1.0-49	62	7.6	
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	2.7	5.3	0.40-5.3	16	1.3	
	Particulate	USEPA M5 or 17	mg/m³	34	80	5.2-80	63	18	
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	3.8	10	0.19-10	63	1.5	
	Acetone	Modified USEPA MTO5	mg/m³	1.8	9.9	0.050-9.9	62	1.4	
	Benzene	USEPA M18 (tube)	mg/m³	0.25	1.4	0.021-1.4	62	0.19	
	2-butanone	Modified USEPA MTO5	mg/m³	0.20	1.5	0.050-1.5	63	0.19	
	Formaldehyde	Modified USEPA MTO5	mg/m³	4.8	16	0.19-16	63	2.9	
	Naphthalene	USEPA M18	mg/m³	0.012	0.045	0.0024-0.045	12	0.016	
	Ethylbenzene	USEPA M18	mg/m³	0.0041	0.0080	0.0024-0.0080	12	0.0019	
	Styrene	USEPA M18	mg/m³	0.0071	0.017	0.0036-0.017	12	0.0049	
	Toluene	USEPA M18	mg/m³	0.029	0.086	0.0036-0.086	12	0.030	
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-	
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-	
	Xylenes	USEPA M18	mg/m³	0.018	0.045	0.0050-0.045	12	0.014	

Table 38: Emission Information for Calciner 3 Stack

Emission Sampling Period	2002-2018		Comment		Most data are from 2005-2018. For compounds not measured in regular compliance sampling, data dates to 2002.				
Gas Stream Characteristics	2018		Assumptions						
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation	
O a mala v a tila m	NO _x	USEPA Method 7E	mg/m³	122	289	47-289	63	46	
Combustion Products	CO	USEPA Method 10	mg/m³	43	100	0.60-100	63	21	
Floudets	SO ₂	USEPA Method 6C	mg/m³	3.5	40	1.0-40	62	5.8	
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	2.7	5.3	0.40-5.3	16	1.3	
Miscellarieous	Particulate	USEPA M5 or 17	mg/m³	20	59	4.6-59	63	11	
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	2.8	14	0.19-14	75	1.7	
	Acetone	Modified USEPA MTO5	mg/m³	1.3	11	0.050-11	75	1.3	
	Benzene	USEPA M18 (tube)	mg/m³	0.14	0.92	0.0036-0.92	73	0.14	
	2-butanone	Modified USEPA MTO5	mg/m³	0.16	0.62	0.050-0.62	75	0.084	
	Formaldehyde	Modified USEPA MTO5	mg/m³	2.9	16	0.19-16	75	2.1	
	Naphthalene	USEPA M18	mg/m³	0.012	0.045	0.0024-0.045	12	0.016	
	Ethylbenzene	USEPA M18	mg/m³	0.0041	0.0080	0.0024-0.0080	12	0.0019	
	Styrene	USEPA M18	mg/m³	0.0071	0.017	0.0036-0.017	12	0.0049	
	Toluene	USEPA M18	mg/m³	0.029	0.086	0.0036-0.086	12	0.030	
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-	
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	12	-	
	Xylenes	USEPA M18	mg/m³	0.018	0.045	0.0050-0.045	12	0.014	

Table 39: Emission Information for Calciner 4 Stack

Emission Sampling Period	2002-2018		Comment	Most data are from 2005-2018. For compounds not measured in regular compliance sampling, data dates to 2002. Ammonia and naphthalene data are from Calciner 3.				
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Combustion Products	NO _x	USEPA Method 7E	mg/m³	124	270	25-270	63	61
	CO	USEPA Method 10	mg/m³	188	870	3.8-870	63	172
	SO ₂	USEPA Method 6C	mg/m³	3.1	24	1.0-24	62	3.9
Miscellaneous	Ammonia	ECS Method 1.0	mg/m³	2.7	5.3	0.40-5.3	16	1.3
Miscellarieous	Particulate	USEPA M5 or 17	mg/m³	29	79	3.8-79	63	18
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	3.2	6.7	0.19-6.7	63	1.4
	Acetone	Modified USEPA MTO5	mg/m³	2.0	11	0.075-11	62	1.7
	Benzene	USEPA M18 (tube)	mg/m³	0.21	0.42	0.0050-0.42	63	0.11
	2-butanone	Modified USEPA MTO5	mg/m³	0.16	0.50	0.050-0.50	63	0.087
	Formaldehyde	Modified USEPA MTO5	mg/m³	4.7	14	0.30-14	63	2.8
	Naphthalene	USEPA M18	mg/m³	0.012	0.045	0.0024-0.045	12	0.016
	Ethylbenzene	USEPA M18	mg/m³	0.0083	0.020	0.0025-0.020	3	0.010
	Styrene	USEPA M18	mg/m³	0.0090	0.020	0.0-0.020	5	0.010
	Toluene	USEPA M18	mg/m³	0.10	0.10	0.090-0.10	2	0.0071
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	0.0024	0.0070	0.0-0.0070	5	0.0029
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	5	-
	Xylenes	USEPA M18	mg/m³	0.033	0.050	0.015-0.050	2	0.025

5.14.1. Calcination Odour Emissions

Average annual odour concentrations measured in Calcination are shown in **Figure 15**. The trends show that there has been a significant reduction in average calciner odour emissions since 2010. To ensure that the emission inventory is representative of current refinery conditions, data from 2010-2018 have been used to determine peak and average odour emission rates from the calciners.

The approach for determining emission rates set out in **Section 4.3** is believed to present an unrealistically high peak for odour concentration from the calciners. To address this, calcination odour emissions have been determined using measured emission rates (i.e. concentration multiplied by the flow rate measured at the time of sampling) rather than average and peak measured concentrations multiplied by the calculated average and peak flow rates.

Odour emission rates for each of the calciners are presented in Table 40.

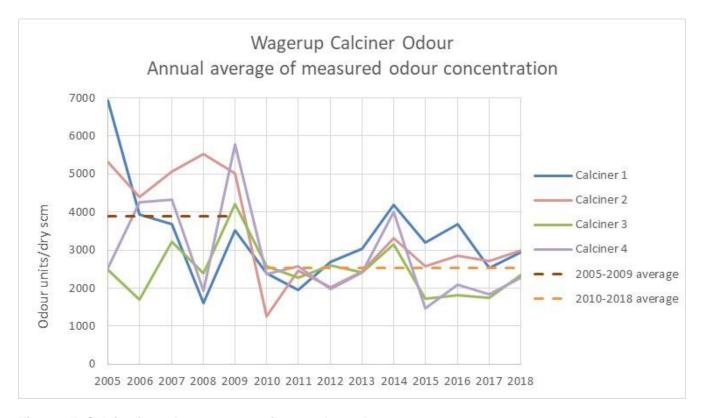


Figure 15: Calcination odour concentration trends 2005-2018

Table 40: Calcination odour emission rates

Emission Sampling Period	2010-2018		Comment Average and peak values were determined using measured odour emissio					on rates.
Source	Compound	Method	Unit	Emission rate (ave)	Emission rate (peak)	Emission rate Range	No. Data points	Standard Deviation
Calciner 1	Odour	AS4323.3	OU/s	118235	330000	12000-330000	36	70683
Calciner 2	Odour	AS4323.3	OU/s	99559	210000	13500-210000	36	57064
Calciner 3	Odour	AS4323.3	OU/s	98636	274000	10900-274000	36	55804
Calciner 4	Odour	AS4323.3	OU/s	150455	307000	14900-307000	36	73187

5.15. Calciner Low Flow Emissions

Calciner feed (alumina trihydrate (Al₂O₃.H₂O)) is washed on vacuum filters to reduce entrained caustic. The calciner low flow emissions consist of the 50B tank vents, hood collection vents from the Dorrco horizontal pan filters, and the pan filter vacuum pump discharges. The purpose of each of these is outlined below:

- The 50B tank supplies wash water to the pan filters.
- The filter hoods collect steam coming off the pan filters and these emissions are vented to the atmosphere. The venting reduces the steam vapours in the vicinity of the filters. The Calciner 1-3 pan filter vents were measured in 2017 and found to be significant.
- The pan filter vacuum pumps are used to pull spent liquor and wash waste from the hydrate filter cake. This collected liquid is hot and some of the water vaporizes from the liquid and is pulled though the vacuum pump. In addition to the water vapour, some of the organics in the liquor are also vaporized and pulled through the vacuum pump. These organics are a significant emission source. The vacuum exhaust is collected and emitted to air.

Four calciners, each with its own vacuum pumps, are in operation at Wagerup Refinery. The vacuum exhaust emissions from Calciners 1, 2 and 3, the 50B tank and the Dorrco filter hoods were combined and emitted from a single vent within the multi-flue (via the Low Volume Vent (LVV)). In 2013 a works approval was issued by the DER (W5391/2013) in which construction was approved to redirect the emissions from the LVV to Calciners 1 – 3 for combustion. This project was completed in 2015 and the environmental licence (L6217/1983) amended accordingly. The 2018 emission inventory has been updated to reflect the changes in emissions.

Flow measurements for the LVV are taken from the duct exiting the 50B condensate tank. All other sampling is performed from the multi-flue sampling location.

The vacuum exhaust emissions from Calciner 4 are vented to air via its own 41.7m high stack and the vacuum pump and Dorrco filter stack were included in the 2010 model. Both stacks for Calciner 4 were discussed during the 2013 workshops, though there were no visual emissions from the filter stack during the workshop (this is considered normal by operating centre personnel).

Data documented in the 2012 inventory for both the Calciner 4 vacuum exhaust emissions and the extraction hoods were re-evaluated in 2014 with measurements undertaken.

Very low flow rates were recorded for the Calciner 4 extraction hoods, below the detection limit of the method. The detection limit was used in this case.

Assumptions:

For the Calciner 1,2,3 pan filter exhaust vent flows, it has been assumed that there are three pan filters online for the average case, and five pan filters online for the peak case

Figure 16: Calcination multi-flue stack (includes Calciner 1-3 LVV)

Figure 17: 50B Tank

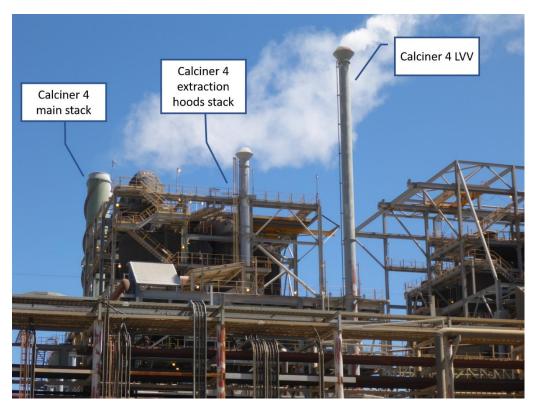


Figure 18: Calciner 4 stacks

Table 41: Calciner 1-3 Low Volume Vent Stack Source Information

Source Name	Name	Calciner 1-3 Low Volume	Vent Stack	
	Abbreviation	Cal 1-3 LVV		
Physical	No. of Stacks	1		
Characteristics	Height (m)	100		
	Stack tip diameter (m)	0.925		
	Location (Easting & Northing)	398317.940	6357200.422	
	Single/Multi-flue	Multi-flue		
	Sample Plane (Ideal/Non-ideal)	Ideal		
	Source Type (Point/ volume/ Area)	Point		
Regulated Source				
CEMS		None		
Gas Stream Characteristics		Average	Peak	
	Temp (°C)	95	103	
	Exit velocity (m/s)	13	33	
	Moisture content (%)	42	61	
	Flow Rate (Dry Nm3/hr)	1841	3132	
	Flow Rate (measured or calculated)	Measured		
Emission Frequency	Continuous / Intermittent	Continuous		
Emission Control(s)	Control 1	VOC emission reduction s	ystem	
	Year of Installation	2015		
	Operating Strategy	a .:	95% availability	
	Operating Strategy	Continuous	target	

Table 42: Emission Information for Calciner 1-3 Low Volume Vent Stack

2002-2018		Comment	Most data are from Q4 2014 – 2018, after the 2014 VOC emission reduction project was commissioned. For compounds not measured after 2014 historic data has been used.						
2018		Assumptions							
Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation		
NOx	USEPA M7E	mg/m³	1.7	3.5	1.5-3.5	16	0.48		
CO	USEPA M10	mg/m³	ND	ND	-	16	-		
SO ₂	USEPA M6C	mg/m³	ND	ND	-	16	-		
Odour	AS4323.3	OU/wet/Nm ³	6523	18000	1100-18000	30	4446		
Ammonia	Not characterised								
Particulate	Not characterised								
Acetaldehyde	Modified USEPA MTO5	mg/m³	6.4	20	0.52-20	30	5.7		
Acetone	Modified USEPA MTO5	mg/m³	40	180	2.5-180	30	43		
Benzene	USEPA M18 (tube)	mg/m³	0.0088	0.037	0.0034-0.037	30	0.0076		
2-butanone	Modified USEPA MTO5	mg/m³	3.0	10	0.050-10	30	3.1		
Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	30	-		
Naphthalene	Not characterised								
Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-		
Styrene	USEPA M18	mg/m³	ND	ND	-	2	-		
Toluene	USEPA M18	mg/m³	5.1	10	0.10-10	2	7.0		
1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-		
1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-		
Xylenes	USEPA M18	mg/m³	2.3	2.3	2.3	1	-		
	2002-2018 2018 Compound NOx CO SO2 Odour Ammonia Particulate Acetaldehyde Acetone Benzene 2-butanone Formaldehyde Naphthalene Ethylbenzene Styrene Toluene 1,2,4 Trimethylbenzene 1,3,5 Trimethylbenzene	2002-2018 Compound Method NOx USEPA M7E CO USEPA M10 SO2 USEPA M6C Odour AS4323.3 Ammonia Not characterised Particulate Not characterised Acetaldehyde Modified USEPA MTO5 Acetone Modified USEPA MTO5 Benzene USEPA M18 (tube) 2-butanone Modified USEPA MTO5 Formaldehyde Modified USEPA MTO5 Naphthalene Not characterised Ethylbenzene USEPA M18 Styrene USEPA M18 Toluene USEPA M18 Toluene USEPA M18 1,2,4 Trimethylbenzene 1,3,5 Trimethylbenzene USEPA M18 USEPA M18	2018 Compound Method Unit NOx USEPA M7E mg/m³ CO USEPA M10 mg/m³ SO2 USEPA M6C mg/m³ Odour AS4323.3 OU/wet/Nm³ Ammonia Not characterised Particulate Not characterised Acetaldehyde Modified USEPA MTO5 mg/m³ Acetone Modified USEPA MTO5 mg/m³ Benzene USEPA M18 mg/m³ Styrene USEPA M18 mg/m³ Toluene USEPA M18 mg/m³ Trimethylbenzene Nethod Vasepa M18 mg/m³ Toluene USEPA M18 mg/m³ Trimethylbenzene Nethod Vasepa M18 mg/m³ Toluene USEPA M18 mg/m³ Trimethylbenzene USEPA M18 mg/m³ Trimethylbenzene Nethod Vasepa M18 mg/m³ Trimethylbenzene USEPA M18 mg/m³ Trimethylbenzene USEPA M18 mg/m³ Trimethylbenzene USEPA M18 mg/m³ Trimethylbenzene USEPA M18 mg/m³ Trimethylbenzene	Comment Most data are project was consistoric data had assumptions	Comment	Comment	Comment		

Table 43: Calciner 4 Low Volume Vent Stack Source Information

Table 43: Calciner 4 Lo	w Volume Vent Stack Source	Information				
Source Name	Name	Calciner 4 Low Volume Ve	ent			
	Abbreviation	Cal 4 LVV				
Physical	No. of Stacks	1				
Characteristics	Height (m)	41.7				
	Stack tip diameter (m)	0.89				
	Location (Easting & Northing)	398384.0 6357161.3				
	Single/Multi-flue	Single				
	Sample Plane (Ideal/Non-ideal)	Ideal				
	Source Type (Point/ volume/ Area)	Point				
Regulated Source		No				
CEMS		None				
Gas Stream Characteristics		Average	Peak			
	Temp (°C)	68	68			
	Exit velocity (m/s)	5.5	5.5			
	Moisture content (%)	24	24			
	Flow Rate (Dry Nm3/hr)	7800	7800			
	Flow Rate (measured or calculated)	Measured				
Emission Frequency	Continuous / Intermittent	Continuous				
Emission Control(s)		None				

Table 44: Emission Information for Calciner 4 Low Volume Vent Stack

Emission Sampling Period	2014		Comment					
Gas Stream Characteristics	2014		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	1800	1900	1700-1900	2	141
Miscellaneous	Ammonia	Not characterised						
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	3.3	3.4	3.1-3.4	2	0.21
	Acetone	Modified USEPA MTO5	mg/m³	25	27	23-27	2	2.8
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	2	-
	2-butanone	Modified USEPA MTO5	mg/m³	3.8	4.0	3.6-4.0	2	0.28
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	2	-
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	Not characterised						
	1,2,4 Trimethylbenzene	Not characterised						
	1,3,5 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

Table 45: Calciner 1.2.3 Pan Filters Exhaust Vents Source Information

Source Name	Name	Calciner 1,2,3 Pan Filter	rs Exhaust Vents		
	Abbreviation	50 Pan Filter Vents			
Physical	No. of Stacks	5			
Characteristics	Height (m)	20.1			
	Stack tip diameter (m)	0.31			
	Location (Easting & Northing)	398316.05	6357142.25		
	Single/Multi-flue	Single			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		No			
Regulated Source CEMS		No None			
			Peak		
CEMS Gas Stream	Temp (°C)	None	Peak 71		
CEMS Gas Stream	Temp (°C) Exit velocity (m/s)	None Average			
CEMS Gas Stream		None Average 71	71		
CEMS Gas Stream	Exit velocity (m/s)	None Average 71 6.2	71 6.2		
CEMS Gas Stream	Exit velocity (m/s) Moisture content (%)	None Average 71 6.2 32	71 6.2 32		
CEMS Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	None Average 71 6.2 32 3420	71 6.2 32		

Table 46: Emission Information for Calciner 1,2,3 Pan Filters Exhaust Vents

Emission Sampling Period	2017		Comment					
Gas Stream Characteristics	2017		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	4400	4600	4200-4600	2	283
Miscellaneous	Ammonia	Not characterised						
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	11	11	10-11	2	0.71
	Acetone	Modified USEPA MTO5	mg/m³	39	42	36-42	2	4.2
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	2	-
	2-butanone	Modified USEPA MTO5	mg/m³	5.3	5.4	5.1-5.4	2	0.21
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	2	-
	Naphthalene	USEPA M18	mg/m³	ND	ND	-	2	-
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	Styrene	USEPA M18	mg/m³	ND	ND	-	2	-
	Toluene	USEPA M18	mg/m³	0.057	0.063	0.051-0.063	2	0.0085
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	Xylenes	USEPA M18	mg/m³	ND	ND	-	2	-

Table 47: Calciner 4 Extraction Hoods Source Information

Source Name	Name	Calciner 4 Extraction H	loods			
Source Name		Calciner 4 Extraction 1	10003			
	Abbreviation					
Physical	No. of Stacks	1				
Characteristics	Height (m)	37.8				
	Stack tip diameter (m)	0.88				
	Location (Easting & Northing)	398388.6	6357145.3			
	Single/Multi-flue	Single				
	Sample Plane (Ideal/Non-ideal)	Non-ideal				
	Source Type (Point/ volume/ Area)	Point				
Regulated Source		No				
CEMS		None				
Gas Stream Characteristics		Average	Peak			
	Temp (°C)	24	24			
	Exit velocity (m/s)	<2	<2			
	Moisture content (%)	1.3	1.3			
	Flow Rate (Dry Nm3/hr)	<4200	<4200			
		Measured				
	Flow Rate (measured or calculated)	Measured				
Emission Frequency	· ·	Measured Continuous	When Calciner 4 online			

Table 48: Emission Information for Calciner 4 Extraction Hoods

Emission Sampling Period	2014		Comment					
Gas Stream Characteristics	2014		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	610	640	590-640	2	35
Miscellaneous	Ammonia	Not characterised						
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	2	-
	Acetone	Modified USEPA MTO5	mg/m³	2.1	2.2	1.9-2.2	2	0.21
	Benzene	USEPA M18 (tube)	mg/m³	ND	ND	-	2	-
	2-butanone	Modified USEPA MTO5	mg/m³	0.26	0.26	0.25-0.26	2	0.0071
	Formaldehyde	Modified USEPA MTO5	mg/m³	ND	ND	-	2	-
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	Not characterised						
	1,2,4 Trimethylbenzene	Not characterised						
	1,3,5 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

5.16. Calcination Cooling Towers (Building 50)

A description of cooling towers at Wagerup Refinery is provided in **Section 5.9**.

The Calcination Cooling Towers use mostly Upper Dam water as make-up water, so emissions from this source are not expected to be significant. There are occasions when Lower Dam water is used, so a factor has been applied to the flow data to allow for this. In 2018, Lower Dam water was used for 1.9% of the time, so a factor of 1.9% has been applied to the average source flow rate.

Assumptions:

This source has never been measured, so it has been assumed that the concentration is the same as the Precipitation Cooling Towers 45K2 and 45K3 (see **Section 5.9**).

Figure 19: Calcination cooling towers

	Towers Source Information			
Source Name	Name	50 Coolin	g Tower 1 & 2	
	Abbreviation	50 CT1 & 50 CT2		
Physical	No. of Stacks	2		
Characteristics	Height (m)	4.9		
	Stack tip diameter (m)	3.0		
	Location (Easting & Northing)	CT1	398356.326	6357195.000
		CT2	398356.155	6357195.000
	Single/Multi-flue	Single		
	Sample Plane (Ideal/Non-ideal)	Non-idea	I	
	Source Type (Point/ volume/ Area)	Point		
Regulated Source		No		
CEMS		None		
Gas Stream Characteristics		A	Average	Peak
	Temp (°C)		57	57
	Exit velocity (m/s)		0.16	8.6
	Moisture content (%)		17	17
	Flow Rate (Dry Nm3/hr)	2824 14864		148643
	Flow Rate (measured or calculated)	Calculate	d	
Emission Frequency	Continuous / Intermittent	Continuous		
Emission Control(s)		None		

Table 50: Emission Information for 50 Cooling Tower 1 & 2 Stacks

Emission Sampling Period	2001-2007		Comment		No data is available for 50 Cooling Towers, so 45K Cooling Tower of has been used.			
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
	Odour	AS4323.3	OU/wet/Nm ³	256	724	74-724	11	250
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	ND	ND	-	4	-
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5 (ECS M6)	mg/m³	ND	ND	-	44	-
	Acetone	USEPA Method 0030 (VOST)	mg/m³	0.038	3.5	0.024-3.5	17	1.1
	Benzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	12	-
	2-butanone	USEPA Method 0030 (VOST)	mg/m³	0.011	0.70	0.0040-0.70	12	0.20
	Formaldehyde	Modified USEPA MTO5 (ECS M6)	mg/m³	0.26	0.58	0.20-0.58	44	0.11
	Naphthalene	USEPA Method 0030 (VOST)	mg/m³	0.0032	0.016	0.0018-0.016	13	0.0039
	Ethylbenzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
	Styrene	USEPA Method 0030 (VOST)	mg/m³	0.0021	0.0080	0.0010-0.0080	13	0.0018
	Toluene	USEPA Method 0030 (VOST)	mg/m³	0.0023	0.0090	0.0010-0.0090	13	0.0021
	1,2,4 Trimethylbenzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
	1,3,5 Trimethylbenzene	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-
1	Xylenes	USEPA Method 0030 (VOST)	mg/m³	ND	ND	-	11	-

5.17. Boilers (Building 110)

The Wagerup powerhouse generates electricity and process steam (for process heating and generation of electricity) for the refining process by means of natural gas fired boilers and a Gas Turbine Heat Recovery Steam Generator. Currently, three boilers are in operation at Wagerup: Boilers 1, 2 and 3.

Non-condensable gases¹⁵ from digestion, evaporation and heat exchange and collected tank vapours from the 984Y mercury removal system are diverted to Boilers 2 and 3 to destroy their organic/VOC content prior to atmospheric release. Depending on process requirements/conditions, the non-condensable gases can be sent either 100% to Boiler 2, 100% to Boiler 3, or a 50% allocation to each Boiler 2 and 3.

The boilers are monitored quarterly under the environmental licence L6217/1983.

Assumptions:

Ammonia concentration data from Boiler 3 were used for Boilers 1 and 2.

Figure 20: Boilers 1-3 Stack

¹⁵ Non-condensable gases are gases that will not condense to a liquid at ambient temperatures (including VOCs)

Table 51: Boiler 1 Source Information

Source Name	Name	Boiler 1				
	Abbreviation					
Physical	No. of Stacks	1				
Characteristics	Height (m)	65				
	Stack tip diameter (m)	2.40				
	Location (Easting & Northing)	398760.939 6357660.418				
	Single/Multi-flue	Multi-flue				
	Sample Plane (Ideal/Non-ideal)	Non-ideal				
	Source Type (Point/ volume/ Area)	Point				
Regulated Source		Yes				
CEMS		None				
Gas Stream Characteristics		Average	Peak			
	Temp (°C)	Average 116	Peak 130			
	Temp (°C) Exit velocity (m/s)					
	Exit velocity (m/s) Moisture content (%)	116	130			
	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr)	116 16	130 22			
	Exit velocity (m/s) Moisture content (%)	116 16 17	130 22 19			
	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	116 16 17 153796	130 22 19 195350			
	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated)	116 16 17 153796 Calculated	130 22 19 195350 ent to this boiler			
Characteristics	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other Continuous / Intermittent Control 1	116 16 17 153796 Calculated Non-condensable gases se	130 22 19 195350 ent to this boiler			
Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other Continuous / Intermittent	116 16 17 153796 Calculated Non-condensable gases secontinuous when Boiler 1	130 22 19 195350 ent to this boiler			
Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other Continuous / Intermittent Control 1	116 16 17 153796 Calculated Non-condensable gases so Continuous when Boiler 1 Low NO _x burners	130 22 19 195350 ent to this boiler			

Table 52: Boiler 2 Source Information

Source Name	Name	Boiler 2			
	Abbreviation				
Physical	No. of Stacks	1			
Characteristics	Height (m)	65			
	Stack tip diameter (m)	2.00 398760.939 6357660.418			
	Location (Easting & Northing)				
	Single/Multi-flue	Multi-flue			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		Yes			
CEMS		None			
_		Average Peak			
Gas Stream Characteristics		Average	Peak		
	Temp (°C)	Average 110	Peak 121		
	Temp (°C) Exit velocity (m/s)				
	• ` '	110	121		
	Exit velocity (m/s)	110 17	121 21		
	Exit velocity (m/s) Moisture content (%)	110 17 16	121 21 17		
	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	110 17 16 111609	121 21 17 136504		
	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated)	110 17 16 111609 Calculated	121 21 17 136504 ent to this boiler		
Characteristics	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other	110 17 16 111609 Calculated Non-condensable gases s	121 21 17 136504 ent to this boiler		
Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other Continuous / Intermittent	110 17 16 111609 Calculated Non-condensable gases s Continuous when Boiler 2	121 21 17 136504 ent to this boiler		
Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Other Continuous / Intermittent Control 1	110 17 16 111609 Calculated Non-condensable gases s Continuous when Boiler 2 Low NO _x burners	121 21 17 136504 ent to this boiler		

Table 53: Boiler 3 Source Information

Table 53: Boiler 3 Sour	ce information				
Source Name	Name	Boiler 3			
	Abbreviation				
Physical	No. of Stacks	1			
Characteristics	Height (m)	65 2.00 398760.939 6357660.418			
	Stack tip diameter (m)				
	Location (Easting & Northing)				
	Single/Multi-flue	Multi-flue			
	Sample Plane (Ideal/Non-ideal)	Non-ideal			
	Source Type (Point/ volume/ Area)	Point			
Regulated Source		Yes			
		None			
CEMS		None			
Gas Stream Characteristics		None Average	Peak		
Gas Stream	Temp (°C)		Peak 152		
Gas Stream	Temp (°C) Exit velocity (m/s)	Average			
Gas Stream		Average 137	152		
Gas Stream	Exit velocity (m/s)	Average 137 17	152 22		
Gas Stream	Exit velocity (m/s) Moisture content (%)	137 17 17	152 22 18		
Gas Stream	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or	137 17 17 17 104589	152 22 18		
Gas Stream Characteristics	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated)	137 17 17 17 104589 Calculated	152 22 18 128650 When Boiler 1 is		
Gas Stream Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Continuous / Intermittent	Average 137 17 17 104589 Calculated Continuous	152 22 18 128650 When Boiler 1 is		
Gas Stream Characteristics Emission Frequency	Exit velocity (m/s) Moisture content (%) Flow Rate (Dry Nm3/hr) Flow Rate (measured or calculated) Continuous / Intermittent Control 1	Average 137 17 17 104589 Calculated Continuous Low NO _x burners	152 22 18 128650 When Boiler 1 is		

Table 54: Emission Information for Boiler 1 Stack

Emission Sampling Period	2002-2018		Comment	Ammonia data are from Boiler 3.				
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
O a mala vertica e	NO _x	USEPA Method 7E	mg/m³	241	320	180-320	56	33
Combustion Products	CO	USEPA Method 10	mg/m³	2.4	19	0.60-19	56	3.7
1 1000013	SO ₂	USEPA Method 6C	mg/m³	1.5	2.9	1.0-2.9	56	0.49
	Odour	AS4323.3	OU/wet/Nm ³	809	1799	317-1799	9	432
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	4.1	4.2	4.1-4.2	2	0.035
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Acetone	Modified USEPA MTO5	mg/m³	0.73	1.0	0.20-1.0	3	0.46
	Benzene	USEPA M18 (tube)	mg/m³	0.13	0.15	0.10-0.15	2	0.035
	2-butanone	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Formaldehyde	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Naphthalene	Not characterised						
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	4	-
	Styrene	USEPA M18	mg/m³	ND	ND	-	2	-
	Toluene	USEPA M18	mg/m³	ND	ND	-	2	-
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	5	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	Xylenes	Not characterised						

Table 55: Emission Information for Boiler 2 Stack

Emission Sampling Period		Ammonia data are from Boiler 3.						
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
O and a Car	NOx	USEPA Method 7E	mg/m³	84	118	65-118	56	10
Combustion Products	CO	USEPA Method 10	mg/m³	18	150	0.65-150	56	32
Tioddolo	SO ₂	USEPA Method 6C	mg/m³	1.6	5.2	1.0-5.2	56	0.82
	Odour	AS4323.3	OU/wet/Nm ³	938	3142	376-3142	13	743
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	4.1	4.2	4.1-4.2	2	0.035
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	0.30	0.40	0.20-0.40	2	0.14
	Acetone	Modified USEPA MTO5	mg/m³	0.85	0.90	0.80-0.90	2	0.071
	Benzene	USEPA M18 (tube)	mg/m³	0.13	0.15	0.10-0.15	2	0.035
	2-butanone	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Formaldehyde	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Naphthalene	Not characterised						
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	6	-
	Styrene	USEPA M18	mg/m³	ND	ND	-	4	-
	Toluene	USEPA M18	mg/m³	ND	ND	-	2	-
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	6	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	6	-
I	Xylenes	Not characterised						

Table 56: Emission Information for Boiler 3 Stack

Emission Sampling Period	2002-2018		Comment					
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
Cambustian	NOx	USEPA Method 7E	mg/m³	114	171	86-171	56	14
Combustion Products	CO	USEPA Method 10	mg/m³	26	192	0.65-192	56	35
Troddoto	SO ₂	USEPA Method 6C	mg/m³	1.6	5.3	1.0-5.3	56	0.75
	Odour	Alcoa developed	OU/wet/Nm ³	600	1233	209-1233	12	304
Miscellaneous	Ammonia	USEPA CTM-027	mg/m³	4.1	4.2	4.1-4.2	2	0.035
	Particulate	Not characterised						
VOCs	Acetaldehyde	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20	2	0.0
	Acetone	Modified USEPA MTO5	mg/m³	1.2	1.2	1.1-1.2	2	0.071
	Benzene	USEPA M18 (tube)	mg/m³	0.13	0.15	0.10-0.15	2	0.035
	2-butanone	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Formaldehyde	Modified USEPA MTO5	mg/m³	0.20	0.20	0.20-0.20	2	0.0
	Naphthalene	Not characterised						
	Ethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	Styrene	USEPA M18	mg/m³	ND	ND	-	2	-
	Toluene	USEPA M18	mg/m³	ND	ND	-	1	-
	1,2,4 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	1,3,5 Trimethylbenzene	USEPA M18	mg/m³	ND	ND	-	2	-
	Xylenes	Not characterised						

5.18. Gas Turbine/Heat Recovery Steam Generation (Building 110)

The Wagerup powerhouse generates process steam and electricity for the refining process by means of natural gas fired boilers and a Gas Turbine/Heat Recovery Steam Generator (GT/HRSG).

The GT/HRSG is monitored quarterly under the environmental licence L6217/1983.

Odour and VOC emissions from this source have not been characterised. Emissions are expected to be low. Measurements will be undertaken as part of the Improvement Program (see **Section 1.3.1**).

Figure 21: GT/HRSG stack

Table 57: Gas Turbine 1 Source Information

Source Name Gas Turbine 1	
Abbreviation GT/HRSG	
Physical No. of Stacks 1	
Characteristics Height (m) 40	
Stack tip diameter (m) 3.05	
Location (Easting & 398721.938 6357543.41	19
Single/Multi-flue Single	
Sample Plane Non-ideal (Ideal/Non-ideal)	
Source Type (Point/ volume/ Area) Point	
Regulated Source Yes	
CEMS Yes None	
	k
CEMS None Gas Stream Average Pea	
CEMS None Gas Stream Characteristics None Average Pea)
CEMS None Gas Stream Characteristics Temp (°C) None Average Pea)
CEMS None Gas Stream Characteristics Average Pea Temp (°C) 144 160 Exit velocity (m/s) 23 28)
CEMS None Gas Stream Characteristics Average Pea Temp (°C) 144 160 Exit velocity (m/s) 23 28 Moisture content (%) 7.8 10)
CEMS None Gas Stream Characteristics Average Pea Temp (°C) 144 160 Exit velocity (m/s) 23 28 Moisture content (%) 7.8 10 Flow Rate (Dry Nm3/hr) 366186 4199 Flow Rate (measured or Calculated Calculated	57 Turbine
CEMS None Gas Stream Characteristics Average Pea Temp (°C) 144 160 Exit velocity (m/s) 23 28 Moisture content (%) 7.8 10 Flow Rate (Dry Nm3/hr) 366186 4199 Flow Rate (measured or calculated) Calculated When Gas	57 Turbine
CEMS None Gas Stream Characteristics Average Pea Temp (°C) 144 160 Exit velocity (m/s) 23 28 Moisture content (%) 7.8 10 Flow Rate (Dry Nm3/hr) 366186 4199 Flow Rate (measured or calculated) Calculated Emission Frequency Continuous / Intermittent Continuous is operation	57 Turbine
CEMS None Gas Stream Characteristics Average Pea Exit velocity (m/s) 23 28 Moisture content (%) 7.8 10 Flow Rate (Dry Nm3/hr) 366186 4199 Flow Rate (measured or calculated) Calculated Emission Frequency Continuous / Intermittent Continuous When Gas is operation Emission Control(s) Control 1 Low NOx burners	Turbine nal

Table 58: Emission Information for Gas Turbine 1 Stack

Emission Sampling Period	2002-2018		Comment					
Gas Stream Characteristics	2018		Assumptions					
Compound Class	Compound	Method	Unit	Conc (ave)	Conc (peak)	Conc Range	No. Data points	Standard Deviation
O and a fine	NOx	USEPA Method 7E	mg/m³	29	60	5.1-60	55	12
Combustion Products	CO	USEPA Method 10	mg/m³	52	280	2.0-280	56	56
rioddolo	SO ₂	USEPA Method 6C	mg/m³	2.5	31	1.0-31	54	4.3
	Odour	Not characterised						
Miscellaneous	Ammonia	Not characterised						
	Particulate	Not characterised						
VOCs	Acetaldehyde	Not characterised						
	Acetone	Not characterised						
	Benzene	Not characterised						
	2-butanone	Not characterised						
	Formaldehyde	Not characterised						
	Naphthalene	Not characterised						
	Ethylbenzene	Not characterised						
	Styrene	Not characterised						
	Toluene	Not characterised						
	1,2,4 Trimethylbenzene	Not characterised						
	1,3,5 Trimethylbenzene	Not characterised						
	Xylenes	Not characterised						

5.19. Residue Storage Areas

Residue is the common term for the material remaining after the alumina has been extracted from the bauxite ore. This material is stored at the residue area adjacent to the refinery. Residue consists of a coarse sand fraction (often termed 'red sand') and a fine silt fraction (often termed 'red mud'). The mud density is increased at the residue area by thickening prior to its final discharge to residue storage areas (RSAs). The sand is stockpiled and subsequently used for internal construction activities at the RSAs. Oxalate, another by-product, is also stored in approved areas on site (oxalate storage ponds).

Several other facilities that support the refining operations are located in the residue area. These include ponds designed to cool refinery process liquor (cooling pond), and to store rainfall run-off water from both the refinery site and residue area (run-off water storage (ROWS) pond and run-off collection ponds (ROCPs)). Water is recycled back to the refinery via the cooling pond. Fresh water storage areas are also within the residue storage areas (detention ponds).

The Lower Dam has also been included in the residue area assessment, even though it lies within the refinery boundary, as it is a source of fugitive VOC emissions.

RSA9 and ROCP3 were commissioned in 2014, bringing the total residue footprint to 379.22 hectares.

Decommissioning of ROCP1 commenced in 2017. Most of this pond is now covered with dry sand, with negligible emissions. The wet area of the pond is estimated to be 2 hectares.

Areas of the RSAs and other residue facilities are provided in **Table 59**. Locations of each of the RSAs and other residue facilities are shown in **Figure 22**. The Lower Dam is shown in **Figure 23**.

Assumptions:

No formaldehyde emissions from Lower Dam or Cooling Pond. Oxalate ponds and ROCPs to have same emissions as ROWs pond. Wet mud and dry mud have different emissions.

Table 59: 2018 Wagerup Residue Areas for Fugitive VOC Emissions

Wagerup Residue Source	Area (ha)
Super Thickener	0.461
Cooling Pond	15.13
Residue Mud	233.36
ROWS	25.64
ROCP 1	2.0
ROCP 2	4.86
ROCP 3	9.11
Spent Liquor Pond	2.08
Lower Dam	17.7
Oxalate Pond 1	0.3
Oxalate Pond 2	1.45
Oxalate Pond 3	2.76
Sand Lake	4.54
Wet Area at Sand Canon	0.5

Figure 22: Wagerup Residue Area

Figure 23: Wagerup Refinery

Emissions from the drying area have been determined for three surface types, selected to represent various stages of drying. These are:

- Wet residue taken as the residue up to several days after pouring depending on the conditions;
- Dry residue 1 the period following this; and
- Dry residue 2 towards the end of the drying cycle.

Estimates of the percentage of the total RSA at each of the three stages were revised in 2008 and are provided in **Table 60**.

Table 60: Percentage of Dry Stacked Areas Covered by the Three Residue Classes

Source	Wet Residue (%)	Dry Residue 1 (%)	Dry Residue 2 (%)	
Summer	27	36	37	
Winter	35	51	14	

Residue area VOC emission rates are provided in **Table 61**. VOC emissions from the various RSA surfaces were estimated from measurements using an isolation flux hood to determine emissions per unit area. Measurements were undertaken in three phases in 2004 and 2005.

Table 61: Residue Area VOC Emission Rates

Source	BaP Equivalents	Acetone	Acetaldehyde	Formaldehyde	2-Butanone	Benzene	Toluene	Xylenes	Odour
	(μg/m²/min)								(OU/m²/min)
Lower Dam		0.25	2.8						6.7-56.3
ROCP		0.25	0.07	0.55					1.85
RSA2 – Liquor Southern		11.60	8.70	0.13	1.47	0.05	0.16		37
RSA2 – Wet Residue - North	2.0E-05	2.52	0.8	0.4	0.28	0.09	0.18		16.78
Super Thickener	1.38E-04	77.35	56.73	0.78	7.63	1.10	4.50	0.71	86.8
Cooling Pond	1.4E-04	13.24	8.9	1.5	1.97	1.24	0.9	0.07	13.8-66.7
Oxalate Pond		0.25	0.07	0.55					0.37
ROWS		0.25	0.07	0.55					0.36
Wet Residue	2.0E-05	2.52	0.8	0.4	0.28	0.09	0.18		15.1
Dry Residue 1		0.11	0.42	0.90		0.01	0.01		0.6
Dry Residue 2		0.42	0.05	0.08		0.01	0.06		1.46
Wet Sand	2.0E-05	2.52	8.0	0.4	0.28	0.09	0.18		16.78

Note: Bolded and italicised emissions are dependent on temperature and/or season. The residue values given here are based on a temperature of 25°C with lower dam and cooling pond emissions for the range of winter and summer emission values.

6. References

Alcoa, 2002. Wagerup Refinery Air Emissions Inventory: Final Report. Alcoa World Alumina – Australia.

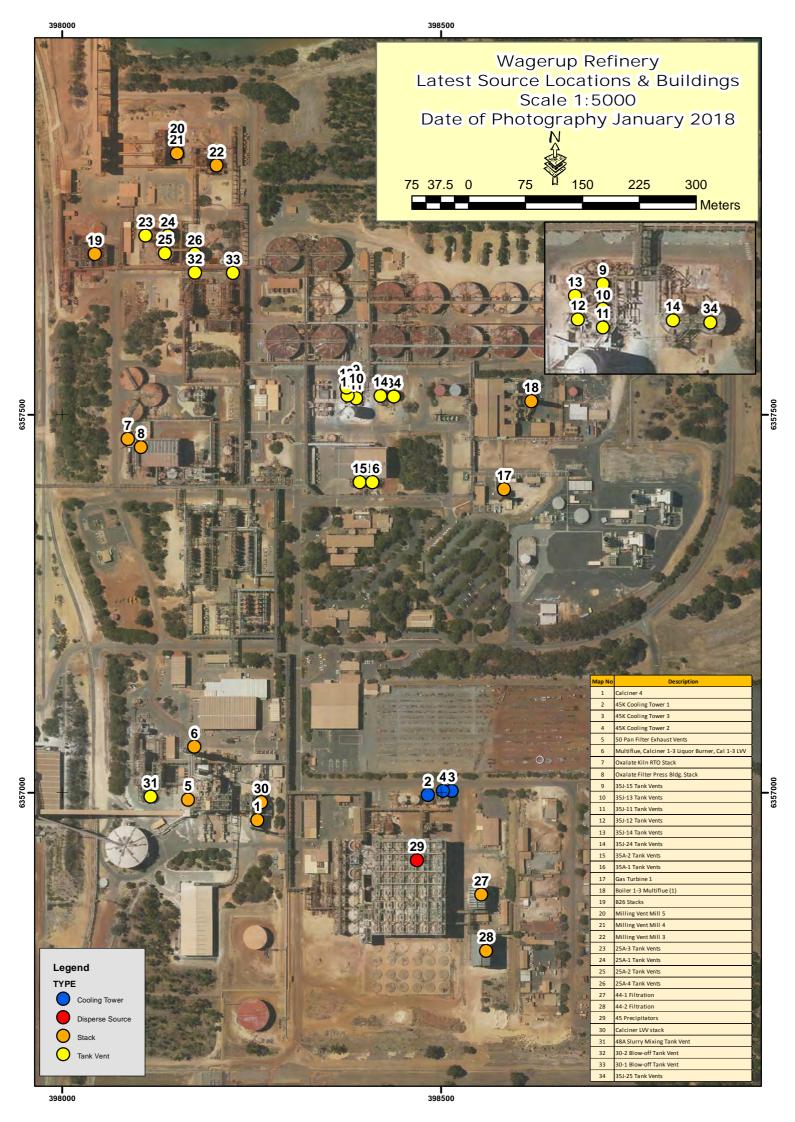
Alcoa, 2015. Overview of Wagerup Refinery Emission Inventory 2014. Alcoa of Australia Ltd.

Alcoa, 2019. Estimation of Volatile Organic Compound Emissions from 45K Cooling Towers at Wagerup Refinery. Alcoa of Australia Ltd.

CSIRO, 2004. Wagerup Air Quality Review, for Alcoa Word Alumina Australia, 2004. CSIRO Atmosphere Research, Australia

Data Analysis Australia (DAA), 2008. Development of an Odour/Odorant Correlation for Predicting Odour Emission Concentrations.

Data Analysis Australia (DAA), 2013. Odour Data Analysis: Wagerup 2013 Update, report to Alcoa, June 2013


Environ, 2005. Compound Selection Procedure: Wagerup Refinery Unit Three Expansion. for Alcoa World Alumina Australia, 2005. Environ Australia Pty Ltd

Environ, 2010. Wagerup Air Dispersion Modelling. Report prepared for Alcoa of Australia Ltd.

Wagerup Air Quality Technical Advisory Panel (TAP), 2007. Wagerup Air Quality Action Plan Sign-Off Report, Item 12: Methylene Chloride.

Appendix A Latest source locations

Appendix B

Protocol used for calculation of average concentrations

With the exception of odour, laboratories report concentration data either as a measured value (usually mg/m3) or as 'nd' (not detected). An 'nd' is assigned when an analyte is not detected above the method detection limit (MDL) of the analysis. It is more accurate to report this value as, say <0.2 mg/m³, rather than '0' as the substance may be present, but at levels which are not detectable.

The average concentration over a time period must be calculated from individual concentration data points. For any series of data, it is possible to have some concentrations which have been reported as measured values (e.g. 0.2 mg/m³) as well as some 'nd' values. The following protocol was used in calculating average concentrations in the Concentration Masterfile:

- 1 All data measured above the method detection limit were inputted as a numerical value and the cell highlighted in orange.
- 2 All data reported as 'nd' were inputted as 'half the method detection limit' and the cell was left un-coloured. For example, if an analyte was reported as 'nd' and the method detection limit was 0.1 mg/m³, the value was inputted as 0.05 mg/m³. A comment was added to the cell to indicate what the original MDL was and to highlight that the value was a '½ MDL' value.
- 3 Once all concentration data for an analyte/source had been collated in the Concentration Masterfile, if all data points for that analyte/source had been reported as a measured value, then the average was calculated from all measured values.
- 4 Alternatively, if all data points for that analyte/source had been reported as 'nd', the average concentration was reported as '0'. The justification for this is that if an analyte has been measured multiple times, and on all occasions has not been present above its MDL, it is very unlikely that this analyte is present in the emissions.
- 5 Alternatively, if at least one measured value above the MDL had been reported (together with a number of 'nd' values), the average was calculated from the measured value and all 'nd' results been given a value of 'half the MDL'.

In some cases, discretion may be used to determine if/how a particular data point would be included. For example:

1 In some cases where a reported result is obviously different to all other data points (assuming a large data set), then this data point could be considered to be an outlier and may be excluded from the average calculation. In general, 9 'nd' data points were

- needed for every 1 measured data point to justify being excluded. A comment was added to the cell to indicate the original value and why it had been excluded.
- 2 In some cases where all bar one result was reported as 'nd' and the other result was reported at the MDL (e.g. a measured value of 0.1 mg/m³ was reported and the MDL of the analysis was 0.1 mg/m³), the result reported at the MDL was assumed to be '½ MDL' in the average calculation.

Appendix C 2018 Emission files

2018 Base Case Emission Rates – Average

2018 Base Case Emission Rates – Peak

2018 BASE CASE EMISSION RATES - AVERAGE

	Legena. 0 dei	ioles illeast	irea pai noi delected	, IN/A denotes that th	le source nas not be	Products of Combustion Miscellaneous							
	Stack	Stack	Average Stack	Average Stack	Average Stack					Measured			
Source	Diameter	Height	Flow - DRY	Gas Moisture	Flow - WET	NOx	co	SO2	Dust	Odour	Ammonia		
	m	m	Dry Nm3/hr	%	Wet Nm3/hr	g/s	g/s	g/s	g/s	OU/sec	g/s		
Combustion Equipment Point Sources:													
Liquor Burning	1.10	100.0	52477	5%	55355	2.02	0.22	0.024	0.024	49668	0.01		
Calciner 1	1.90	100.0	64625	50%	128224	1.70	2.86	0.14	0.59	118235	0.05		
Calciner 2	1.90	100.0	68141	49%	133872	1.68	2.85	0.10	0.65	99559	0.05		
Calciner 3	2.15	100.0	98733	40%	165382	3.34	1.18	0.10	0.55	98636	0.07		
Calciner 4	2.35	48.8	116528	47%	218217	4.00	6.08	0.12	0.93	150455	0.09		
Boiler 1	2.40	65.0	153796	17%	185969	10.32	0.10	0.062	N/A	41808	0.18		
Boiler 2	2.00	65.0	111609	16%	133185	2.61	0.57	0.050	N/A	34702	0.13		
Boiler 3	2.00	65.0	104589	17%	125406	3.32	0.75	0.045	N/A	20907	0.12		
Gas Turbine 1	3.05	40.0	366186	8%	397079	2.90	5.27	0.25	N/A	N/A	N/A		
Oxalate Kiln	1.00	36.8	34650	6%	37019	0.32	0.053	0.025	8.79E-03	8509	N/A		
Non-Combustion Equipment Point Sources:													
Calciner 1-3 Low Volume Vent	0.35	100.0	1841	42%	3174	8.69E-04	0.00	0.00	N/A	5752	N/A		
45K Cooling Tower 2	7.32	17.5	1509962	12%	1723701	N/A	N/A	N/A	N/A	122574	0.00		
45K Cooling Tower 3	7.32	17.5	1550049	12%	1769462	N/A	N/A	N/A	N/A	125828	0.00		
45K Cooling Tower 1	7.25	9.0	1045812	12%	1185997	N/A	N/A	N/A	N/A	84338	0.00		
50 Cooling Tower 1	3.00	4.9	2824	17%	3420	N/A	N/A	N/A	N/A	243.17	0.00		
50 Cooling Tower 2	3.00	4.9	2824	17%	3420	N/A	N/A	N/A	N/A	243.17	0.00		
Building 45 - Row 0 precip tanks	12.5	30.2	35400	46%	65133	N/A	N/A	N/A	N/A	N/A	N/A		
Building 45 - Row 1 precip tanks	11.0	29.35	27416	46%	50443	N/A	N/A	N/A	N/A	N/A	N/A		
Building 45 - Row 2 precip tanks	11.0	28.5	25221	41%	42388	N/A	N/A	N/A	N/A	N/A	N/A		
Building 45 - Row 3 precip tanks	11.0	27.7	26971	29%	37961	N/A	N/A	N/A	N/A	N/A	N/A		
Building 45 - Row 4 precip tanks	11.0 11.0	26.9 26.1	30824 30824	29% 29%	43384 43384	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		
Building 45 - Row 5 precip tanks 44-1 Main Stack	1.10	35.1	4200	20%	5250	N/A N/A	N/A N/A	N/A	N/A N/A	2333	N/A N/A		
44-1 IVV1	0.60	28.3	7800	17%	9398	N/A N/A	N/A N/A	N/A	N/A N/A	3133	N/A N/A		
44-1 LVV2	0.60	28.4	1920	15%	2259	N/A N/A	N/A N/A	N/A	N/A N/A	816	N/A N/A		
44-2 Main Stack	1.08	35.1	5400	23%	7013	N/A	N/A	N/A	N/A	2338	N/A		
44-2 LVV	1.00	35.3	16200	7%	17476	N/A	N/A	N/A	N/A	5340	N/A		
Calciner 4 LVV	0.89	41.7	7800	24%	10263	N/A	N/A	N/A	N/A	5132	N/A		
Calciner 4 Extraction Hoods	0.88	37.8	4200	1%	4255	N/A	N/A	N/A	N/A	721	N/A		
48A Tank Exhaust	0.30	9.5	240	35%	369	N/A	N/A	N/A	N/A	697	N/A		
47K1 oxalate filter press building stack	0.84	35.0	4837.5	9%	5304	N/A	N/A	N/A	N/A	1414	0.05		
Grouped Sources:	0.04	00.0	4007.0	370	0004	1 14/7 3	14// \	14// (13// (1414	0.00		
Mill 3 Trommel Vent	0.45	13.0	6052	24%	7921	N/A	N/A	N/A	0.12	8311	0.13		
Mill 4 Trommel Vent	0.45	13.0	6052	24%	7921	N/A	N/A	N/A	0.12	8311	0.13		
Mill 5 Trommel Vent	0.45	13.0	6052	24%	7921	N/A	N/A	N/A	0.12	8311	0.13		
25A-1 Tank Vents (Vent 1)	0.75	25.4	338	68%	1042	N/A	N/A	N/A	N/A	4285	0.23		
25A-1 Tank Vents (Vent 2)	0.75	25.4	338	68%	1042	N/A	N/A	N/A	N/A	4285	0.23		
25A-2 Tank Vents	0.50	25.4	676	68%	2084	N/A	N/A	N/A	N/A	8570	0.46		
25A-3 Tank Vents (Vent 1)	0.75	25.4	761	90%	7940	N/A	N/A	N/A	N/A	97605	0.52		
25A-3 Tank Vents (Vent 2)	0.75	25.4	761	90%	7940	N/A	N/A	N/A	N/A	97605	0.52		
25A-4 Tank Vents	0.55	25.4	676	68%	2084	N/A	N/A	N/A	N/A	8570	0.46		
Blow-off (stack 1)	0.73	24.3	0	99%	0	N/A	N/A	N/A	N/A	0	0.00		
Blow-off (stack 2)	0.73	24.3	0	99%	0	N/A	N/A	N/A	N/A	0	0.00		
35J-11 Tank Vents (Non cons)	0.49	9.7	1514	21%	1923	N/A	N/A	N/A	8.97E-04	6300	0.02		
35J-12 Tank Vents (Non cons)	0.49	9.7	1352	21%	1718	N/A	N/A	N/A	8.01E-04	5626	0.02		
35J-13 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00		
35J-14 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00		
35J-15 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00		
35J-24 Tank Vents (Non cons)	0.49	9.7	281	67%	859	N/A	N/A	N/A	1.67E-04	1091	0.00		
35J-25 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00		
B26 Stacks (Existing)	1.13	27.0	19839	50%	39678	N/A	N/A	N/A	N/A	77124	0.30		
35A-1 Tank Vent (Non cons)	0.60	16.5	0	37%	0	N/A	N/A	N/A	N/A	0	0.00		
35A-2 Tank Vent (Non cons)	0.60	16.5	652	37%	1032	N/A	N/A	N/A	N/A	9400	0.023		
35A-1 overflow pipe	0.40	0.10	0	37%	0	N/A	N/A	N/A	N/A	0	0.00		
35A-2 overflow pipe	0.40	0.10	99	37%	157	N/A	N/A	N/A	N/A	1427	0.0035		
Calciner 1-3 Pan Filter Exhaust Vents	0.31	20.1	3420	32%	5029	N/A	N/A	N/A	N/A	6147	N/A		

2018 BASE CASE EMISSION RATES - AVERAGE

	Volatile Organic Compounds											
			BaP				Ĭ			1,2,4	1,3,5	
Source	Acetaldehyde	Acetone	Equivalents	Benzene	2-Butanone	Ethylbenzene	Formaldehyde	Styrene	Toluene	Trimethylbenzene	Trimethylbenzene	Xylenes
	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s
Combustion Equipment Point Sources:			, ,		<u> </u>	<u>, </u>	<u>, </u>	<u> </u>	<u> </u>	<u> </u>	<u>'</u>	
Liquor Burning	2.38E-03	1.25E-02	1.95E-07	1.08E-03	1.77E-03	0.00E+00	2.53E-03	0.00E+00	2.18E-04	0.00E+00	0.00E+00	8.25E-05
Calciner 1	7.14E-02	3.68E-02	2.17E-07	4.91E-03	3.45E-03	7.43E-05	8.03E-02	1.28E-04	5.18E-04	0.00E+00	0.00E+00	3.16E-04
Calciner 2	7.29E-02	3.48E-02	2.29E-07	4.65E-03	3.83E-03	7.84E-05	9.16E-02	1.35E-04	5.47E-04	0.00E+00	0.00E+00	3.33E-04
Calciner 3	7.67E-02	3.68E-02	3.32E-07	3.95E-03	4.39E-03	1.14E-04	8.05E-02	1.96E-04	7.92E-04	0.00E+00	0.00E+00	4.82E-04
Calciner 4	1.03E-01	6.44E-02	3.92E-07	6.93E-03	5.05E-03	2.70E-04	1.52E-01	2.91E-04	3.08E-03	7.77E-05	0.00E+00	1.05E-03
Boiler 1	8.54E-03	3.13E-02	N/A	5.34E-03	8.54E-03	0.00E+00	8.54E-03		0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 2	9.30E-03	2.64E-02	N/A	3.88E-03	6.20E-03	0.00E+00	6.20E-03		0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 3	5.81E-03	3.34E-02	N/A	3.63E-03	5.81E-03	0.00E+00	5.81E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Gas Turbine 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Oxalate Kiln	0.00E+00	4.43E-03	N/A	0.00E+00	0.00E+00	N/A	7.97E-04	N/A	N/A	N/A	N/A	N/A
Non-Combustion Equipment Point Sources:												
Calciner 1-3 Low Volume Vent	3.26E-03	2.04E-02	N/A	4.52E-06	1.56E-03	0.00E+00	0.00E+00	0.00E+00	2.58E-03	0.00E+00	0.00E+00	1.18E-03
45K Cooling Tower 2	0.00E+00	1.59E-02	1.33E-06	0.00E+00	4.47E-03	0.00E+00	1.07E-01	7.55E-04	8.69E-04	0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 3	0.00E+00	1.63E-02	1.36E-06	0.00E+00	4.59E-03	0.00E+00	1.10E-01	7.75E-04	8.92E-04	0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 1	0.00E+00	1.10E-02	9.21E-07	0.00E+00	3.10E-03	0.00E+00	7.43E-02	5.23E-04	6.02E-04	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 1	N/A	4.98E-04	N/A	0.00E+00	5.36E-05	0.00E+00	2.01E-04	1.64E-06	1.82E-06	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 2	N/A	4.98E-04	N/A	0.00E+00	5.36E-05	0.00E+00	2.01E-04	1.64E-06	1.82E-06	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 0 precip tanks	0.00E+00	6.76E-04	N/A	3.07E-05	2.07E-04	3.66E-05	0.00E+00	2.88E-05	5.80E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 1 precip tanks	0.00E+00	5.24E-04	N/A	2.38E-05	1.60E-04	2.84E-05	0.00E+00	2.23E-05	4.49E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 2 precip tanks	0.00E+00	1.16E-03	N/A	0.00E+00	3.15E-04	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 3 precip tanks	0.00E+00	4.72E-04	N/A	0.00E+00	1.35E-04	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 4 precip tanks	0.00E+00	5.39E-04	N/A	0.00E+00	1.54E-04	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 5 precip tanks	0.00E+00	5.39E-04	N/A	0.00E+00	1.54E-04	0.00E+00	0.00E+00	0.00E+00	3.68E-05	0.00E+00	0.00E+00	0.00E+00
44-1 Main Stack	1.69E-03	1.45E-02	N/A	0.00E+00	2.80E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV1	8.67E-04	4.98E-03	N/A	0.00E+00	1.22E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV2	4.53E-04	2.19E-03	N/A	0.00E+00	5.79E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 Main Stack	2.63E-03	3.68E-02	N/A	0.00E+00	1.31E-02	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 LVV	6.08E-04	3.58E-03	N/A	0.00E+00	1.31E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 LVV	7.04E-03	5.42E-02	N/A	0.00E+00	8.23E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 Extraction Hoods	0.00E+00	2.39E-03	N/A	0.00E+00	2.98E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
48A Tank Exhaust	9.33E-05	1.00E-03	N/A	3.97E-05	3.53E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
47K1 oxalate filter press building stack	4.57E-04	7.19E-03	N/A	N/A	7.12E-03	2.55E-05	0.00E+00	N/A	6.25E-05	N/A	N/A	0.00E+00
Grouped Sources:	4.07 € 04	7.102 00	14// (14// (7.122 00	2.002 00	0.002.00	14// (0.202 00	14// (14/7 (0.002.00
Mill 3 Trommel Vent	2.71E-02	6.80E-02	1.40E-08	8.40E-05	3.45E-03	0.00E+00	0.00E+00	0.00F+00	2.01E-04	2.56E-04	0.00E+00	8.74E-05
Mill 4 Trommel Vent	2.71E-02	6.80E-02	1.40E-08	8.40E-05	3.45E-03	0.00E+00	0.00E+00		2.01E-04	2.56E-04	0.00E+00	8.74E-05
Mill 5 Trommel Vent	2.71E-02	6.80E-02	1.40E-08	8.40E-05	3.45E-03	0.00E+00	0.00E+00	0.00E+00		2.56E-04	0.00E+00	8.74E-05
25A-1 Tank Vents (Vent 1)	5.37E-03	4.50E-02	0.00E+00	5.44E-05	4.86E-03	4.31E-05	0.00E+00	4.69E-06	5.19E-04	5.51E-05	7.70E-05	4.83E-05
25A-1 Tank Vents (Vent 1)	5.37E-03	4.50E-02	0.00E+00	5.44E-05	4.86E-03	4.31E-05	0.00E+00	4.69E-06	5.19E-04	5.51E-05	7.70E-05	4.83E-05
25A-2 Tank Vents	1.07E-02	9.01E-02	0.00E+00	1.09E-04	9.72E-03	8.62E-05	0.00E+00	9.38E-06	1.04E-03	1.10E-04	1.54E-04	9.67E-05
25A-2 Tank Vents (Vent 1)	4.79E-02	6.18E-02	0.00E+00	1.09L-04 1.22E-04	5.07E-03	9.71E-05	0.00E+00	1.06E-05	1.04L-03	1.24E-04	1.73E-04	1.09E-04
25A-3 Tank Vents (Vent 1) 25A-3 Tank Vents (Vent 2)	4.79E-02 4.79E-02	6.18E-02	0.00E+00	1.22E-04 1.22E-04	5.07E-03	9.71E-05 9.71E-05	0.00E+00	1.06E-05	1.17E-03	1.24E-04	1.73E-04 1.73E-04	1.09E-04
25A-3 Tank Vents (Vent 2)	1.07E-02	9.01E-02	0.00E+00 0.00E+00	1.22E-04 1.09E-04	9.72E-03	8.62E-05	0.00E+00	9.38E-06	1.17E-03 1.04E-03	1.24E-04 1.10E-04	1.73E-04 1.54E-04	9.67E-05
Blow-off (stack 1)	0.00E+00	0.00E+00	0.00E+00 N/A	0.00E+00	0.00E+00	0.02E-03 N/A	0.00E+00 0.00E+00	9.36E-00 N/A	0.00E+00	0.00E+00	N/A	9.07E-03 N/A
Blow-off (stack 1)	0.00E+00 0.00E+00	0.00E+00 0.00E+00	N/A N/A	0.00E+00 0.00E+00	0.00E+00 0.00E+00	N/A N/A	0.00E+00 0.00E+00	N/A N/A	0.00E+00	0.00E+00 0.00E+00	N/A N/A	N/A N/A
35J-11 Tank Vents (Non cons)	4.41E-03	1.62E-02	1.60E-07	0.00E+00 0.00E+00	2.22E-03	0.00E+00	1.23E-04	0.00E+00		3.46E-04	9.76E-05	0.00E+00
35J-11 Tank Vents (Non cons)	3.94E-03	1.62E-02 1.45E-02	1.60E-07 1.43E-07	0.00E+00 0.00E+00	1.98E-03	0.00E+00 0.00E+00	1.23E-04 1.09E-04		3.04E-04 2.71E-04	3.46E-04 3.09E-04	9.76E-05 8.72E-05	0.00E+00 0.00E+00
, ,	3.94E-03 2.41E-03	5.19E-03	1.43E-07 4.30E-08	0.00E+00 0.00E+00	7.39E-04	0.00E+00 0.00E+00	3.96E-05		8.17E-04	9.31E-05	2.62E-05	0.00E+00 0.00E+00
35J-13 Tank Vents (Non cons) 35J-14 Tank Vents (Non cons)	2.41E-03 2.41E-03	5.19E-03 5.19E-03	4.30E-08 4.30E-08	0.00E+00 0.00E+00	7.39E-04 7.39E-04	0.00E+00 0.00E+00	3.96E-05 3.96E-05		8.17E-05 8.17E-05	9.31E-05 9.31E-05	2.62E-05 2.62E-05	0.00E+00 0.00E+00
, ,	2.41E-03 2.41E-03	5.19E-03 5.19E-03	4.30E-08 4.30E-08	0.00E+00 0.00E+00	7.39E-04 7.39E-04	0.00E+00 0.00E+00	3.96E-05 3.96E-05		8.17E-05 8.17E-05	9.31E-05 9.31E-05	2.62E-05 2.62E-05	0.00E+00 0.00E+00
35J-15 Tank Vents (Non cons)			4.30E-08 2.97E-08	0.00E+00 0.00E+00	7.39E-04 5.10E-04	0.00E+00 0.00E+00					2.62E-05 1.81E-05	0.00E+00 0.00E+00
35J-24 Tank Vents (Non cons)	1.67E-03 2.41E-03	3.59E-03				0.00E+00 0.00E+00	2.74E-05		5.64E-05	6.43E-05	1.81E-05 2.62E-05	0.00E+00 0.00E+00
35J-25 Tank Vents (Non cons)		5.19E-03	4.30E-08	0.00E+00	7.39E-04		3.96E-05		8.17E-05	9.31E-05		
B26 Stacks (Existing)	1.63E-02	2.47E-02	0.00E+00	0.00E+00	1.64E-03	0.00E+00	0.00E+00		2.51E-04	0.00E+00	0.00E+00	0.00E+00
35A-1 Tank Vent (Non cons)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
35A-2 Tank Vent (Non cons)	3.64E-03	1.72E-02	3.75E-07	1.78E-05	2.11E-03	0.00E+00	0.00E+00		1.17E-03	2.14E-04	5.35E-05	6.15E-05
35A-1 overflow pipe	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00
35A-2 overflow pipe	5.53E-04	2.61E-03	5.69E-08	2.71E-06	3.20E-04	0.00E+00	0.00E+00		1.78E-04	3.24E-05	8.13E-06	9.34E-06
Calciner 1-3 Pan Filter Exhaust Vents	9.98E-03	3.71E-02	0.00E+00	0.00E+00	4.99E-03	0.00E+00	0.00E+00	0.00E+00	5.42E-05	0.00E+00	N/A	0.00E+00

2018 BASE CASE EMISSION RATES - PEAK

	Logoria. o aci	iotoo iiioaoa	ica bat not acted	ica, m// acriolos in	at the source has		cts of Comb		Miscellaneous			
Source	Stack Diameter	Stack Height	Peak Stack Flow - DRY	Peak Stack Gas Moisture	Peak Stack Flow - WET	NOx	CO	SO2	Dust	Measured Odour	Ammonia	
	m	m	Dry Nm3/hr	%	Wet Nm3/hr	g/s	g/s	g/s	g/s	OU/sec	g/s	
Combustion Equipment Point Sources:			Dry Hillomin	70	VVCC IVIIIO/III	9,0	9,0	gro	gro	00/000	9,0	
Liquor Burning	1.10	100.0	73672	8%	79732	5.30	1.25	0.22	0.12	303423	0.02	
Calciner 1	1.90	100.0	75418	57%	176623	8.34	13.67	1.38	1.51	330000	0.11	
Calciner 2	1.90	100.0	80859	56%	182526	3.66	20.44	1.09	1.80	210000	0.12	
Calciner 3	2.15	100.0	117000	46%	217877	9.39	3.25	1.30	1.92	274000	0.17	
Calciner 4	2.35	48.8	132738	55%	293668	9.96	32.08	1.00	2.91	307000	0.20	
Boiler 1	2.40	65.0	195350	19%	241173	17.36	1.03	0.16	N/A	120519	0.23	
Boiler 2	2.00	65.0	136504	17%	165059	4.47	5.69	0.20	N/A	144060	0.16	
Boiler 3	2.00	65.0	128650	18%	156129	6.11	6.86	0.19	N/A	53474	0.15	
Gas Turbine 1	3.05	40.0	419957	10%	466774	7.00	32.66	3.64	N/A	N/A	N/A	
Oxalate Kiln	1.00	36.8	46902	9%	51768	0.64	0.31	0.26	0.04	94908	N/A	
Non-Combustion Equipment Point Sources:	1.00	00.0	10002	0,0	01700	0.01	0.01	0.20	0.01	0 1000	14// (
Calciner 1-3 Low Volume Vent	0.35	100.0	3132	61%	8031	3.05E-03	0.0000	0.00	N/A	40153.85	N/A	
45K Cooling Tower 2	7.32	17.5	1509962	12%	1723701	N/A	N/A	N/A	N/A	3.47E+05	0.00	
45K Cooling Tower 3	7.32	17.5	1550049	12%	1769462	N/A	N/A	N/A	N/A	3.56E+05	0.00	
45K Cooling Tower 1	7.25	9.0	1045812	12%	1185997	N/A	N/A	N/A	N/A	2.39E+05	0.00	
50 Cooling Tower 1	3.00	4.9	148643	17%	179977	N/A	N/A	N/A	N/A	3.62E+04	0.00	
50 Cooling Tower 2	3.00	4.9	148643	17%	179977	N/A	N/A	N/A	N/A	3.62E+04	0.00	
Building 45 - Row 0 precip tanks	12.5	30.2	35400	46%	65133	N/A	N/A	N/A	N/A	N/A	0.00 N/A	
Building 45 - Row 1 precip tanks	11	29.35	27416	46%	50443	N/A	N/A	N/A	N/A	N/A	N/A	
Building 45 - Row 2 precip tanks	11	28.5	25221	41%	42388	N/A	N/A	N/A	N/A	N/A	N/A	
Building 45 - Row 2 precip tanks	11	27.7	26971	29%	37961	N/A	N/A	N/A	N/A	N/A	N/A	
Building 45 - Row 4 precip tanks	11	26.9	30824	29%	43384	N/A N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	
Building 45 - Row 4 precip tanks Building 45 - Row 5 precip tanks	11	26.1	30824	29%	43384	N/A	N/A	N/A	N/A	N/A	N/A	
44-1 Main Stack	1.100	35.1	4200	20%	5250	N/A N/A	N/A	N/A	N/A N/A	2.33E+03	N/A	
44-1 Mail Stack 44-1 LVV1	0.60	28.3	7800	17%	9398	N/A N/A	N/A	N/A N/A	N/A N/A	3.13E+03	N/A N/A	
44-1 LVV2	0.60	28.4	1920	15%	2259	N/A N/A	N/A	N/A	N/A N/A	8.16E+02	N/A	
44-1 LVV2 44-2 Main Stack	1						N/A N/A		N/A N/A	2.53E+03		
44-2 LVV	1.080	35.1	5400	23%	7013.0	N/A		N/A	N/A N/A		N/A	
	1.09	35.3	16200	7%	17475.7	N/A	N/A	N/A		5.34E+03	NI/A	
Calciner 4 LVV	0.890	41.7	7800	24%	10263.2	N/A	N/A	N/A	N/A	5.42E+03	N/A	
Calciner 4 Extraction Hoods	0.88	37.8	4200	1%	4255.3	N/A	N/A	N/A	N/A	7.57E+02	N/A	
48A Tank Exhaust	0.295	9.5	240	35%	369.2	N/A	N/A	N/A	N/A	6.97E+02	N/A	
47K1 oxalate filter press building stack	0.840	35.0	20000	9%	21929.8	N/A	N/A	N/A	N/A	6.70E+03	0.23	
Grouped Sources:	1 045	40.0	7007	000/	40000	I 51/5	N 1/A	21/2	1 000	44040	0.40	
Mill 3 Trommel Vent	0.45	13.0	7867	22%	10022	N/A	N/A	N/A	0.22	11219	0.18	
Mill 4 Trommel Vent	0.45	13.0	7867	22%	10022	N/A	N/A	N/A	0.22	11219	1.81E-01	
Mill 5 Trommel Vent	0.45	13.0	7867	22%	10022	N/A	N/A	N/A	0.22	11219	1.81E-01	
25A-1 Tank Vents (Vent 1)	0.75	25.4	372	70%	1238	N/A	N/A	N/A	N/A	11819	5.65E-01	
25A-1 Tank Vents (Vent 2)	0.75	25.4	372	70%	1238	N/A	N/A	N/A	N/A	11819	5.65E-01	
25A-2 Tank Vents	0.50	25.4	743	70%	2477	N/A	N/A	N/A	N/A	23638	1.13E+00	
25A-3 Tank Vents (Vent 1)	0.75	25.4	1785	86%	12750	N/A	N/A	N/A	N/A	820604	2.72E+00	
25A-3 Tank Vents (Vent 2)	0.75	25.4	1785	86%	12750	N/A	N/A	N/A	N/A	820604	2.72E+00	
25A-4 Tank Vents	0.55	25.4	743	70%	2477	N/A	N/A	N/A	N/A	23638	1.13E+00	
Blow-off (stack 1)	0.73	24.3	62	99%	6029	N/A	N/A	N/A	N/A	186984	6.44E-02	
Blow-off (stack 2)	0.73	24.3	221	99%	21387	N/A	N/A	N/A	N/A	663297	2.28E-01	
35J-11 Tank Vents (Non cons)	0.49	9.7	2017	19%	2490	N/A	N/A	N/A	1.68E-03	20045	3.31E-02	
35J-12 Tank Vents (Non cons)	0.49	9.7	1801	19%	2223	N/A	N/A	N/A	1.50E-03	17899	2.95E-02	
35J-13 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	8.65E-03	
35J-14 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	8.65E-03	
35J-15 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	8.65E-03	
35J-24 Tank Vents (Non cons)	0.49	9.7	364	68%	1138	N/A	N/A	N/A	3.03E-04	8395	5.97E-03	
35J-25 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	8.65E-03	
B26 Stacks (Existing)	1.13	27.0	38585	50%	77170	N/A	N/A	N/A	N/A	285100	7.21E-01	
35A-1 Tank Vent (Non cons)	0.60	16.5	0	24%	0	N/A	N/A	N/A	N/A	0	0.00E+00	
35A-2 Tank Vent (Non cons)	0.60	16.5	1069	24%	1407	N/A	N/A	N/A	N/A	44710	7.58E-02	
35A-1 overflow pipe	0.40	0.10	0	24%	0	N/A	N/A	N/A	N/A	0	0.00E+00	
35A-2 overflow pipe	0.40	0.10	1971	24%	2593	N/A	N/A	N/A	N/A	82435	1.40E-01	
Calciner 1-3 Pan Filter Exhaust Vents	0.31	20.1	5700	32%	8382	N/A	N/A	N/A	N/A	10711	N/A	

2018 BASE CASE EMISSION RATES - PEAK

						Volatil	e Organic Compound	ls						
Source	Acetaldehyde	Acetone	BaP Equivalents	Benzene	2-Butanone	Ethylbenzene	Formaldehyde	Styrene	Toluene	1,2,4 Trimethylbenzene	1,3,5 Trimethylbenzene	Xylenes		
	g/s	g/s	g/s											
Combustion Equipment Point Sources:					=									
Liquor Burning	3.89E-02	4.30E-01	7.04E-07	5.32E-03	1.11E-02	0.00E+00	2.46E-02	0.00E+00	7.37E-04	0.00E+00	0.00E+00	1.84E-04		
Calciner 1	2.09E-01	2.09E-01	9.43E-07	2.09E-02	1.68E-02	1.68E-04	3.56E-01	3.56E-04	1.80E-03	0.00E+00	0.00E+00	9.43E-04		
Calciner 2	2.25E-01	2.22E-01	1.01E-06	3.19E-02	3.35E-02	1.80E-04	3.59E-01	3.82E-04	1.93E-03	0.00E+00	0.00E+00	1.01E-03		
Calciner 3	4.67E-01	3.58E-01	1.46E-06	3.00E-02	2.02E-02	2.60E-04	5.06E-01	5.53E-04	2.80E-03	0.00E+00	0.00E+00	1.46E-03		
Calciner 4	2.47E-01	4.06E-01	1.66E-06	1.55E-02	1.84E-02	7.37E-04	5.16E-01	7.37E-04	3.69E-03	2.58E-04	0.00E+00	1.84E-03		
Boiler 1	1.09E-02	5.43E-02	N/A	8.14E-03	1.09E-02	0.00E+00	1.09E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A		
Boiler 2	1.52E-02	3.41E-02	N/A	5.69E-03	7.58E-03	0.00E+00	7.58E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A		
Boiler 3	7.15E-03	4.29E-02	N/A	5.36E-03	7.15E-03	0.00E+00	7.15E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A		
Gas Turbine 1	N/A	N/A	N/A											
Oxalate Kiln	0.00E+00	6.38E-02	N/A	0.00E+00	0.00E+00	N/A	4.43E-03	N/A	N/A	N/A	N/A	N/A		
Non-Combustion Equipment Point Sources:	L 4.745.00	4 575 04	N1/A	0.005.05	0.705.00	0.005.00	0.005.00	0.005.00	0.705.00	0.005.00	0.005.00	0.005.00		
Calciner 1-3 Low Volume Vent	1.74E-02	1.57E-01	N/A	3.22E-05	8.70E-03	0.00E+00	0.00E+00	0.00E+00	8.70E-03	0.00E+00	0.00E+00	2.00E-03		
45K Cooling Tower 2	0.00E+00 0.00E+00	1.47E+00 1.51E+00	6.71E-06 6.89E-06	0.00E+00	2.94E-01	0.00E+00	2.43E-01	3.36E-03	3.77E-03	0.00E+00	0.00E+00	0.00E+00		
45K Cooling Tower 3		1.02E+00		0.00E+00	3.01E-01	0.00E+00	2.50E-01	3.44E-03	3.88E-03	0.00E+00	0.00E+00	0.00E+00		
45K Cooling Tower 1	0.00E+00		4.65E-06	0.00E+00	2.03E-01	0.00E+00	1.68E-01	2.32E-03	2.61E-03	0.00E+00	0.00E+00	0.00E+00		
50 Cooling Tower 1 50 Cooling Tower 2	N/A N/A	1.45E-01 1.45E-01	N/A N/A	0.00E+00 0.00E+00	2.89E-02 2.89E-02	0.00E+00 0.00E+00	2.39E-02 2.39E-02	3.30E-04 3.30E-04	3.72E-04 3.72E-04	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 0 precip tanks	0.00E+00	1.43E-01 1.18E-03	N/A N/A	3.84E-05	3.54E-04	5.02E-05	0.00E+00	3.44E-05	8.56E-05	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 0 precip tanks Building 45 - Row 1 precip tanks	0.00E+00 0.00E+00	9.14E-04	N/A N/A	3.64E-03 2.97E-05	2.74E-04	3.88E-05	0.00E+00 0.00E+00	2.67E-05	6.63E-05	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 1 precip tanks Building 45 - Row 2 precip tanks	0.00E+00 0.00E+00	9.14E-04 1.26E-03	N/A N/A	0.00E+00	3.22E-04	0.00E+00	0.00E+00 0.00E+00	0.00E+00	1.33E-04	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 2 precip tanks Building 45 - Row 3 precip tanks	0.00E+00 0.00E+00	5.69E-04	N/A	0.00E+00 0.00E+00	1.57E-04	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	3.60E-05	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 4 precip tanks	0.00E+00 0.00E+00	6.51E-04	N/A N/A	0.00E+00 0.00E+00	1.80E-04	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	4.11E-05	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00		
Building 45 - Row 5 precip tanks	0.00E+00	6.51E-04	N/A	0.00E+00	1.80E-04	0.00E+00	0.00E+00	0.00E+00	4.11E-05 4.11E-05	0.00E+00	0.00E+00	0.00E+00		
44-1 Main Stack	1.75E-03	1.75E-02	N/A	0.00E+00	2.92E-03	N/A	0.00E+00	0.00L100 N/A	4.11L-03 N/A	N/A	0.00L100 N/A	0.00L100 N/A		
44-1 LVV1	8.67E-04	4.98E-03	N/A	0.00E+00	1.26E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
44-1 LVV2	4.59E-04	2.24E-03	N/A	0.00E+00	6.40E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
44-2 Main Stack	2.85E-03	3.90E-02	N/A	0.00E+00	1.40E-02	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
44-2 LVV	7.65E-04	3.60E-02	N/A	0.00E+00	1.62E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
Calciner 4 LVV	7.37E-03	5.85E-02	N/A	0.00E+00	8.67E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
Calciner 4 Extraction Hoods	0.00E+00	2.57E-03	N/A	0.00E+00	3.03E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
48A Tank Exhaust	9.33E-05	1.07E-03	N/A	4.07E-05	3.80E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A		
47K1 oxalate filter press building stack	2.22E-03	3.28E-02	N/A	N/A	3.17E-02	1.28E-04	0.00E+00	N/A	2.61E-04	N/A	N/A	0.00E+00		
Grouped Sources:	2.222 00	0.202 02	14/7	1471	0.112 02	1.202 01	0.002 - 00	14/7	2.012 01	74/7 (14/7 \	0.002 100		
Mill 3 Trommel Vent	3.93E-02	1.23E-01	1.97E-08	1.51E-04	5.59E-03	0.00E+00	0.00E+00	0.00E+00	3.93E-04	1.43E-03	0.00E+00	1.38E-04		
Mill 4 Trommel Vent	3.93E-02	1.23E-01	1.97E-08	1.51E-04	5.59E-03	0.00E+00	0.00E+00	0.00E+00	3.93E-04	1.43E-03	0.00E+00	1.38E-04		
Mill 5 Trommel Vent	3.93E-02	1.23E-01	1.97E-08	1.51E-04	5.59E-03	0.00E+00	0.00E+00	0.00E+00	3.93E-04	1.43E-03	0.00E+00	1.38E-04		
25A-1 Tank Vents (Vent 1)	9.46E-03	6.65E-02	0.00E+00	2.06E-04	7.38E-03	8.26E-05	0.00E+00	1.03E-05	1.99E-03	3.82E-04	1.55E-04	2.99E-04		
25A-1 Tank Vents (Vent 2)	9.46E-03	6.65E-02	0.00E+00	2.06E-04	7.38E-03	8.26E-05	0.00E+00	1.03E-05	1.99E-03	3.82E-04	1.55E-04	2.99E-04		
25A-2 Tank Vents	1.89E-02	1.33E-01	0.00E+00	4.13E-04	1.48E-02	1.65E-04	0.00E+00	2.06E-05	3.98E-03	7.64E-04	3.10E-04	5.99E-04		
25A-3 Tank Vents (Vent 1)	2.72E-01	2.97E-01	0.00E+00	9.92E-04	3.74E-02	3.97E-04	0.00E+00	4.96E-05	9.57E-03	1.83E-03	7.44E-04	1.44E-03		
25A-3 Tank Vents (Vent 2)	2.72E-01	2.97E-01	0.00E+00	9.92E-04	3.74E-02	3.97E-04	0.00E+00	4.96E-05	9.57E-03	1.83E-03	7.44E-04	1.44E-03		
25A-4 Tank Vents `	1.89E-02	1.33E-01	0.00E+00	4.13E-04	1.48E-02	1.65E-04	0.00E+00	2.06E-05	3.98E-03	7.64E-04	3.10E-04	5.99E-04		
Blow-off (stack 1)	1.22E-02	6.78E-02	N/A	0.00E+00	1.03E-02	N/A	2.08E-04	N/A	8.13E-05	0.00E+00	N/A	N/A		
Blow-off (stack 2)	4.33E-02	2.40E-01	N/A	0.00E+00	3.65E-02	N/A	7.37E-04	N/A	2.89E-04	0.00E+00	N/A	N/A		
35J-11 Tank Vents (Non cons)	8.96E-03	5.51E-02	5.10E-07	0.00E+00	4.41E-03	0.00E+00	5.04E-04	0.00E+00	1.38E-03	9.56E-04	2.76E-04	0.00E+00		
35J-12 Tank Vents (Non cons)	8.00E-03	4.92E-02	4.56E-07	0.00E+00	3.94E-03	0.00E+00	4.50E-04	0.00E+00	1.24E-03	8.54E-04	2.47E-04	0.00E+00		
35J-13 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00		
35J-14 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00		
35J-15 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00		
35J-24 Tank Vents (Non cons)	4.12E-03	8.54E-03	9.21E-08	0.00E+00	8.15E-04	0.00E+00	6.77E-05	0.00E+00	2.50E-04	1.73E-04	4.98E-05	0.00E+00		
35J-25 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00		
B26 Stacks (Existing)	3.88E-02	7.60E-02	0.00E+00	0.00E+00	6.32E-03	0.00E+00	0.00E+00	0.00E+00	8.57E-04	0.00E+00	0.00E+00	0.00E+00		
35A-1 Tank Vent (Non cons)	0.00E+00	0.00E+00	0.00E+00											
35A-2 Tank Vent (Non cons)	1.73E-02	5.95E-02	1.66E-06	6.68E-05	8.89E-03	0.00E+00	0.00E+00	0.00E+00	3.88E-03	1.02E-03	2.52E-04	3.48E-04		
35A-1 overflow pipe	0.00E+00	0.00E+00	0.00E+00											
35A-2 overflow pipe	3.19E-02	1.10E-01	3.07E-06	1.23E-04	1.64E-02	0.00E+00	0.00E+00	0.00E+00	7.14E-03	1.89E-03	4.64E-04	6.42E-04		
Calciner 1-3 Pan Filter Exhaust Vents	1.74E-02	6.65E-02	0.00E+00	0.00E+00	8.55E-03	0.00E+00	0.00E+00	0.00E+00	9.98E-05	0.00E+00	N/A	0.00E+00		

Appendix D 2.85 Mtpa Emission files

2.85 Mtpa Base Case Emission Rates – Average

2.85 Mtpa Base Case Emission Rates – Peak

2018 s.46 2.85Mtpa FORECAST EMISSION RATES - AVERAGE Legend: 0 denotes measured but not detected; N/A denotes no data gathered as it is presumed negligible; '-' denotes not applicable where a source did not exist.

	Legena. o den	oles measured but	i iioi delected, N/A (ienoles no dala galii	ered as it is presume				l where a se		
Source	Stack Diameter	Stack Height	Average Stack Flow - DRY	Average Stack Gas Moisture	Average Stack Flow - WET	NOx	cts of Com	SO2	Dust	Miscellaneo Measured Odour	Ammonia
	m	m	Dry Nm3/hr	%	Wet Nm3/hr	g/s	g/s	g/s	g/s	OU/sec	g/s
Combustion Equipment Point Sources:											
Liquor Burning	1.10	100.0	52477	5%	55355	2.02	0.22	0.02	0.02	49668	0.007
Calciner 1	1.90	100.0	69265	50%	137430	1.83	3.08	0.15	0.64	127023	0.053
Calciner 2	1.90	100.0	73033	49%	143483	1.81	3.06	0.10	0.70	106959	0.055
Calciner 3	2.15	100.0	105821	40%	177255	3.59	1.27	0.10	0.59	105968	0.080
Calciner 4	2.35	48.8	124894	47%	233884	4.30	6.53	0.13	1.00	161638	0.095
Boiler 1	2.40	65.0	164838	17%	199320	11.08	0.11	0.07	N/A	44916	0.189
Boiler 2	2.00	65.0	119622	16%	142747	2.80	0.61	0.05	N/A	37281	0.137
Boiler 3	2.00	65.0	112098	17%	134410	3.56	0.80	0.05	N/A	22461	0.129
Gas Turbine 1	3.05	40.0	392476	8%	425586	3.11	5.66	0.27	N/A	N/A	N/A
Oxalate Kiln	1.00	36.8	34650	6%	37019	0.32	0.05	0.02	0.01	8509	N/A
Non-Combustion Equipment Point Sources:											
Calciner 1-3 Low Volume Vent (100m multiflue)	0.35	100.0	1841	42%	3174	0.0009	0.00	0.00	N/A	5752	N/A
45K Cooling Tower 2	7.32	17.5	1509962	12%	1723701	N/A	N/A	N/A	N/A	131374	0.00
45K Cooling Tower 3	7.32	17.5	1550049	12%	1769462	N/A	N/A	N/A	N/A	134862	0.00
45K Cooling Tower 1	7.25	9.0	1045812	12%	1185997	N/A	N/A	N/A	N/A	90392	0.00
50 Cooling Tower 1	3.00	4.9	2824	17%	3420	N/A	N/A	N/A	N/A	261	0.00
50 Cooling Tower 2	3.00	4.9	2824	17%	3420	N/A	N/A	N/A	N/A	261	0.00
Building 45 - Row 0 precip tanks	12.50	30.2	35400	46%	65133	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 1 precip tanks	11.00	29.4	27416	46%	50443	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 2 precip tanks	11.00	28.5	25221	41%	42388	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 3 precip tanks	11.00	27.7	26971	29%	37961	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 4 precip tanks	11.00	26.9	30824	29%	43384	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 5 precip tanks	11.00	26.1	30824	29%	43384	N/A	N/A	N/A	N/A	N/A	N/A
44-1 Main Stack	1.10	35.1	4200	20%	5250	N/A	N/A	N/A	N/A	2333	N/A
44-1 LVV1	0.60	28.3	7800	17%	9398	N/A	N/A	N/A	N/A	3133	N/A
44-1 LVV2	0.60	28.4	1920	15%	2259	N/A	N/A	N/A	N/A	816	N/A
44-2 Main Stack	1.08	35.1	5400	23%	7013	N/A	N/A	N/A	N/A	2338	N/A
44-2 LVV	1.09	35.3	16200	7%	17476	N/A	N/A	N/A	N/A	5340	N/A
Calciner 4 LVV	0.89	41.7	7800	24%	10263	N/A	N/A	N/A	N/A	5132	N/A
Calciner 4 Extraction Hoods	0.88	37.8	4200	1%	4255	N/A	N/A	N/A	N/A	721	N/A
48A Tank Exhaust	0.30	9.5	240	35%	369	N/A	N/A	N/A	N/A	697	N/A
47K1 oxalate filter press building stack	0.83	35.0	4838	9%	5304	N/A	N/A	N/A	N/A	1414	0.05
Grouped Sources:											
Mill 3 Trommel Vent	0.45	13.0	6411	24%	8392	N/A	N/A	N/A	0.13	8929	0.13
Mill 4 Trommel Vent	0.45	13.0	6411	24%	8392	N/A	N/A	N/A	0.13	8929	0.13
Mill 5 Trommel Vent	0.45	13.0	6411	24%	8392	N/A	N/A	N/A	0.13	8929	0.13
25A-1 Tank Vents (Vent 1)	0.75	25.4	338	68%	1042	N/A	N/A	N/A	N/A	4285	0.23
25A-1 Tank Vents (Vent 2)	0.75	25.4	338	68%	1042	N/A	N/A	N/A	N/A	4285	0.23
25A-2 Tank Vents	0.50	25.4	676	68%	2084	N/A	N/A	N/A	N/A	8570	0.46
25A-3 Tank Vents (Vent 1)	0.75	25.4	761	90%	7940	N/A	N/A	N/A	N/A	97605	0.52
25A-3 Tank Vents (Vent 2)	0.75	25.4	761	90%	7940	N/A	N/A	N/A	N/A	97605	0.52
25A-4 Tank Vents	0.55	25.4	676	68%	2084	N/A	N/A	N/A	N/A	8570	0.46
Blow-off (stack 1)	0.73	24.3	0	99%	0	N/A	N/A	N/A	N/A	0	0.00
Blow-off (stack 2)	0.73	24.3	0	99%	0	N/A	N/A	N/A	N/A	0	0.00
35J-11 Tank Vents (Non cons)	0.49	9.7	1514	21%	1923	N/A	N/A	N/A	8.97E-04	6300	0.02
35J-12 Tank Vents (Non cons)	0.49	9.7	1352	21%	1718	N/A	N/A	N/A	8.01E-04	5626	0.02
35J-13 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00
35J-14 Tank Vents (Non cons)	0.49	9.7	407	67%	1244	N/A	N/A	N/A	2.41E-04	1581	0.00
35J-15 Tank Vents (Non cons)	0.49	9.7 9.7	407	67%	1244	N/A N/A	N/A	N/A	2.41E-04	1581	0.00
35J-24 Tank Vents (Non cons)	0.49 0.49	9.7 9.7	281 407	67%	859 1244	N/A N/A	N/A	N/A	1.67E-04 2.41E-04	1091 1581	0.00 0.00
35J-25 Tank Vents (Non cons)	I			67%			N/A	N/A		1581	
B26 Stacks (Existing)	1.13	27.0	19839	50%	39678	N/A	N/A	N/A	N/A	77124	0.30
35A-1 Tank Vent (Non cons)	0.60	16.5	0 653	37%	0	N/A	N/A	N/A	N/A	0	0.00
35A-2 Tank Vent (Non cons)	0.60 0.40	16.5 0.1	652	37%	1032	N/A N/A	N/A N/A	N/A	N/A	9400	0.02
35A-1 overflow pipe 35A-2 overflow pipe	0.40	0.1	0 99	37% 37%	0 157	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0 1427	0.00 0.00
Calciner 1-3 Pan Filter Exhaust Vents	0.40	20.1	3420	37% 32%	5029	N/A N/A	N/A N/A	N/A N/A	N/A N/A	6147	0.00 N/A
Calcinici 1-3 Fan Filler Exhaust Vents	0.31	ZU. I	3420	JZ 70	3028	IN/A	IN/A	IN/A	IN/A	0147	IN/A

2018 s.46 2.85Mtpa FORECAST EMISSION RATES - AVERAGE
Legend: 0 denotes measured but not detected; N/A denotes no data gathered as it is presumed negligible; '-' denotes not applicable where a source did not exist.

	Legena. o denotes	measured but i	iot detected, N/A	denotes no dai	a galileled as it	1 0 0	ble; - denotes not ap Organic Compour		a source did no	it CAISt.		ī
Source	Acetaldehyde	Acetone	BaP Equivalents	Benzene	2-Butanone	Ethylbenzene	Formaldehyde	Styrene	Toluene	1,2,4 Trimethylbenzene	1,3,5 Trimethylbenzene	Xylenes
	g/s	g/s	g/s	g/s	g/s	g/s						
Combustion Equipment Point Sources:												
Liquor Burning	2.38E-03	1.25E-02	1.95E-07	1.08E-03	1.77E-03	0.00E+00	2.53E-03	0.00E+00	2.18E-04	0.00E+00	0.00E+00	8.25E-05
Calciner 1	7.67E-02	3.95E-02	2.34E-07	5.28E-03	3.70E-03	7.99E-05	8.63E-02	1.38E-04	5.57E-04	0.00E+00	0.00E+00	3.39E-04
Calciner 2	7.83E-02	3.73E-02	2.46E-07	5.00E-03	4.11E-03	8.42E-05	9.84E-02	1.45E-04	5.87E-04	0.00E+00	0.00E+00	3.58E-04
Calciner 3	8.24E-02	3.96E-02	3.57E-07	4.25E-03	4.72E-03	1.22E-04	8.65E-02	2.10E-04	8.51E-04	0.00E+00	0.00E+00	5.18E-04
Calciner 4	1.11E-01	6.91E-02	4.21E-07	7.45E-03	5.42E-03	2.90E-04	1.63E-01	3.13E-04	3.30E-03	8.35E-05	0.00E+00	1.13E-03
Boiler 1	9.18E-03	3.37E-02	N/A	5.74E-03	9.18E-03	0.00E+00	9.18E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 2	9.99E-03	2.83E-02	N/A	4.16E-03	6.66E-03	0.00E+00	6.66E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 3	6.24E-03	3.59E-02	N/A	3.90E-03	6.24E-03	0.00E+00	6.24E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Gas Turbine 1	N/A	N/A	N/A	N/A	N/A	N/A						
Oxalate Kiln	0.00E+00	4.43E-03	N/A	0.00E+00	0.00E+00	N/A	7.97E-04	N/A	N/A	N/A	N/A	N/A
Non-Combustion Equipment Point Sources:	3.26E-03	2.04E-02	N/A	4.52E-06	1.56E-03	0.00E+00	0.00E+00	0.00E+00	2.58E-03	0.00E+00	0.00E+00	1.18E-03
Calciner 1-3 Low Volume Vent (100m multiflue)	0.00E+00			4.52E-00 0.00E+00	4.79E-03	0.00E+00 0.00E+00		9.41E-04		0.00E+00 0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 2		1.70E-02	1.42E-06				1.15E-01		1.04E-03			
45K Cooling Tower 3	0.00E+00	1.75E-02	1.46E-06	0.00E+00	4.92E-03	0.00E+00	1.18E-01	9.66E-04	1.07E-03	0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 1	0.00E+00	1.18E-02	9.87E-07	0.00E+00	3.32E-03	0.00E+00	7.96E-02	6.52E-04	7.21E-04	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 1	N/A	5.34E-04	N/A	0.00E+00	5.74E-05	0.00E+00	2.15E-04	1.76E-06	1.95E-06	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 2	N/A	5.34E-04	N/A	0.00E+00	5.74E-05	0.00E+00	2.15E-04	1.76E-06	1.95E-06	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 0 precip tanks	0.00E+00	6.76E-04	N/A	3.07E-05	2.07E-04	3.66E-05	0.00E+00	2.88E-05	5.80E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 1 precip tanks	0.00E+00	5.24E-04	N/A	2.38E-05	1.60E-04	2.84E-05	0.00E+00	2.23E-05	4.49E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 2 precip tanks	0.00E+00	1.16E-03	N/A	0.00E+00	3.15E-04	0.00E+00	0.00E+00	0.00E+00	1.05E-04	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 3 precip tanks	0.00E+00	4.72E-04	N/A	0.00E+00	1.35E-04	0.00E+00	0.00E+00	0.00E+00	3.22E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 4 precip tanks	0.00E+00	5.39E-04	N/A	0.00E+00	1.54E-04	0.00E+00	0.00E+00	0.00E+00	3.68E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 5 precip tanks	0.00E+00	5.39E-04	N/A	0.00E+00	1.54E-04	0.00E+00	0.00E+00	0.00E+00	3.68E-05	0.00E+00	0.00E+00	0.00E+00
44-1 Main Stack	1.69E-03	1.45E-02	N/A	0.00E+00	2.80E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV1	8.67E-04	4.98E-03	N/A	0.00E+00	1.22E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV2	4.53E-04	2.19E-03	N/A	0.00E+00	5.79E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 Main Stack	2.63E-03	3.68E-02	N/A	0.00E+00	1.31E-02	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 LVV	6.08E-04	3.58E-03	N/A	0.00E+00	1.31E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 LVV	7.04E-03	5.42E-02	N/A	0.00E+00	8.23E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 Extraction Hoods	0.00E+00	2.39E-03	N/A	0.00E+00	2.98E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
48A Tank Exhaust	9.33E-05	1.00E-03	N/A	3.97E-05	3.53E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
47K1 oxalate filter press building stack	4.57E-04	7.19E-03	N/A	N/A	7.12E-03	2.55E-05	0.00E+00	N/A	6.25E-05	N/A	N/A	0.00E+00
Grouped Sources:	2.045.02	7 245 02	4 FOT 00	0.025.05	2.745.02	0.005.00	0.005.00	0.005+00	2.465.04	2.755.04	0.005+00	0.205.05
Mill 3 Trommel Vent	2.91E-02	7.31E-02	1.50E-08	9.03E-05	3.71E-03	0.00E+00	0.00E+00	0.00E+00	2.16E-04	2.75E-04	0.00E+00	9.39E-05
Mill 4 Trommel Vent Mill 5 Trommel Vent	2.91E-02 2.91E-02	7.31E-02 7.31E-02	1.50E-08 1.50E-08	9.03E-05 9.03E-05	3.71E-03	0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00	2.16E-04 2.16E-04	2.75E-04 2.75E-04	0.00E+00 0.00E+00	9.39E-05 9.39E-05
25A-1 Tank Vents (Vent 1)	5.37E-03	4.50E-02	0.00E+00	9.03E-05 5.44E-05	3.71E-03 4.86E-03		0.00E+00	4.69E-06	5.19E-04	5.51E-05		9.39E-05 4.83E-05
25A-1 Tank Vents (Vent 1) 25A-1 Tank Vents (Vent 2)	5.37E-03 5.37E-03	4.50E-02 4.50E-02	0.00E+00 0.00E+00	5.44E-05	4.86E-03	4.31E-05 4.31E-05	0.00E+00 0.00E+00	4.69E-06 4.69E-06	5.19E-04 5.19E-04	5.51E-05 5.51E-05	7.70E-05 7.70E-05	4.83E-05
25A-1 Tank Vents (Vent 2)	1.07E-02	9.01E-02	0.00E+00 0.00E+00	1.09E-04	4.60E-03 9.72E-03	8.62E-05	0.00E+00 0.00E+00	9.38E-06	1.04E-03	1.10E-04	1.54E-04	9.67E-05
25A-2 Tank Vents 25A-3 Tank Vents (Vent 1)	4.79E-02	6.18E-02	0.00E+00 0.00E+00	1.09E-04 1.22E-04	9.72E-03 5.07E-03	9.71E-05	0.00E+00 0.00E+00	9.36E-06 1.06E-05	1.04E-03 1.17E-03	1.10E-04 1.24E-04	1.73E-04	9.67E-03 1.09E-04
25A-3 Tank Vents (Vent 1) 25A-3 Tank Vents (Vent 2)	4.79E-02 4.79E-02	6.18E-02	0.00E+00 0.00E+00	1.22E-04 1.22E-04	5.07E-03 5.07E-03	9.71E-05 9.71E-05	0.00E+00 0.00E+00	1.06E-05	1.17E-03 1.17E-03	1.24E-04 1.24E-04	1.73E-04 1.73E-04	1.09E-04 1.09E-04
25A-4 Tank Vents	1.07E-02	9.01E-02	0.00E+00	1.22L-04 1.09E-04	9.72E-03	8.62E-05	0.00E+00	9.38E-06	1.04E-03	1.10E-04	1.73E-04 1.54E-04	9.67E-05
Blow-off (stack 1)	0.00E+00	0.00E+00	N/A	0.00E+00	0.00E+00	N/A	0.00E+00	N/A	0.00E+00	0.00E+00	N/A	N/A
Blow-off (stack 2)	0.00E+00	0.00E+00	N/A	0.00E+00	0.00E+00	N/A	0.00E+00	N/A	0.00E+00	0.00E+00	N/A	N/A
35J-11 Tank Vents (Non cons)	4.41E-03	1.62E-02	1.60E-07	0.00E+00	2.22E-03	0.00E+00	1.23E-04	0.00E+00	3.04E-04	3.46E-04	9.76E-05	0.00E+00
35J-12 Tank Vents (Non cons)	3.94E-03	1.45E-02	1.43E-07	0.00E+00	1.98E-03	0.00E+00	1.09E-04	0.00E+00	2.71E-04	3.09E-04	8.72E-05	0.00E+00
35J-13 Tank Vents (Non cons)	2.41E-03	5.19E-03	4.30E-08	0.00E+00	7.39E-04	0.00E+00	3.96E-05	0.00E+00	8.17E-05	9.31E-05	2.62E-05	0.00E+00
35J-14 Tank Vents (Non cons)	2.41E-03	5.19E-03	4.30E-08	0.00E+00	7.39E-04	0.00E+00	3.96E-05	0.00E+00	8.17E-05	9.31E-05	2.62E-05	0.00E+00
35J-15 Tank Vents (Non cons)	2.41E-03	5.19E-03	4.30E-08	0.00E+00	7.39E-04	0.00E+00	3.96E-05	0.00E+00	8.17E-05	9.31E-05	2.62E-05	0.00E+00
35J-24 Tank Vents (Non cons)	1.67E-03	3.59E-03	2.97E-08	0.00E+00	5.10E-04	0.00E+00	2.74E-05	0.00E+00	5.64E-05	6.43E-05	1.81E-05	0.00E+00
35J-25 Tank Vents (Non cons)	2.41E-03	5.19E-03	4.30E-08	0.00E+00	7.39E-04	0.00E+00	3.96E-05	0.00E+00	8.17E-05	9.31E-05	2.62E-05	0.00E+00
B26 Stacks (Existing)	1.63E-02	2.47E-02	0.00E+00	0.00E+00	1.64E-03	0.00E+00	0.00E+00	0.00E+00	2.51E-04	0.00E+00	0.00E+00	0.00E+00
35A-1 Tank Vent (Non cons)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
35A-2 Tank Vent (Non cons)	3.64E-03	1.72E-02	3.75E-07	1.78E-05	2.11E-03	0.00E+00	0.00E+00	0.00E+00	1.17E-03	2.14E-04	5.35E-05	6.15E-05
35A-1 overflow pipe	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
35A-2 overflow pipe	5.53E-04	2.61E-03	5.69E-08	2.71E-06	3.20E-04	0.00E+00	0.00E+00	0.00E+00	1.78E-04	3.24E-05	8.13E-06	9.34E-06
Calciner 1-3 Pan Filter Exhaust Vents	9.98E-03	3.71E-02	0.00E+00	0.00E+00	4.99E-03	0.00E+00	0.00E+00	0.00E+00	5.42E-05	0.00E+00	N/A	0.00E+00

2018 s.46 2.85Mtpa FORECAST EMISSION RATES - PEAK
Legend: 0 denotes measured but not detected; N/A denotes no data gathered as it is presumed negligible; '-' denotes not applicable where a source did not exist.

						Produ	ucts of Co	mbustion	Miscellaneous		i
Source	Stack Diameter	Stack Height	Peak Stack Flow - DRY	Peak Stack Gas Moisture	Peak Stack Flow - WET	NOx	СО	SO2	Dust	Measured Odour	Ammonia
	m	m	Dry Nm3/hr	%	Wet Nm3/hr	g/s	g/s	g/s	g/s	OU/sec	g/s
Combustion Equipment Point Sources:			, ,			J	J	<u> </u>	<u> </u>		J
Liquor Burning	1.10	100.0	73672	8%	79732	5.30	1.25	0.22	0.12	303423	0.02
Calciner 1	1.90	100.0	80833	57%	189303	8.94	14.65	1.48	1.62	353692	0.12
Calciner 2	1.90	100.0	86664	56%	195630	3.92	21.91	1.17	1.93	225077	0.13
Calciner 3	2.15	100.0	125400	46%	233519	10.07	3.48	1.39	2.06	293671	0.18
Calciner 4	2.35	48.8	142268	55%	314752	10.67	34.38	1.07	3.12	329041	0.21
Boiler 1	2.40	65.0	209375	19%	258487	18.61	1.11	0.17	N/A	129172	0.24
Boiler 2	2.00	65.0	146304	17%	176909	4.80	6.10	0.21	N/A	154403	0.17
Boiler 3	2.00	65.0	137886	18%	167338	6.55	7.35	0.20	N/A	57313	0.16
Gas Turbine 1	3.05	40.0	450107	10%	500286	7.50	35.01	3.90	N/A	N/A	N/A
Oxalate Kiln	1.00	36.8	46902	9%	51768	0.64	0.31	0.26	0.04	94908	N/A
Non-Combustion Equipment Point Sources:											
Calciner 1-3 Low Volume Vent (100m multiflue)	0.35	100.0	3132	61%	8031	0.0030	0.00	0.00	N/A	40154	N/A
45K Cooling Tower 2	7.32	17.5	1509962	12%	1723701	N/A	N/A	N/A	N/A	371543	0.00
45K Cooling Tower 3	7.32	17.5	1550049	12%	1769462	N/A	N/A	N/A	N/A	381407	0.00
45K Cooling Tower 1	7.25	9.0	1045812	12%	1185997	N/A	N/A	N/A	N/A	255641	0.00
50 Cooling Tower 1	3.00	4.9	148643	17%	179977	N/A	N/A	N/A	N/A	38794	0.00
50 Cooling Tower 2	3.00	4.9	148643	17%	179977	N/A	N/A	N/A	N/A	38794	0.00
Building 45 - Row 0 precip tanks	12.50	30.2	35400	46%	65133	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 1 precip tanks	11.00	29.4	27416	46%	50443	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 2 precip tanks	11.00	28.5	25221	41%	42388	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 3 precip tanks	11.00	27.7	26971	29%	37961	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 4 precip tanks	11.00	26.9	30824	29%	43384	N/A	N/A	N/A	N/A	N/A	N/A
Building 45 - Row 5 precip tanks	11.00	26.1	30824	29%	43384	N/A	N/A	N/A	N/A	N/A	N/A
44-1 Main Stack	1.10	35.1	4200	20%	5250	N/A	N/A	N/A	N/A	2333	N/A
44-1 LVV1	0.60	28.3	7800	17%	9398	N/A	N/A	N/A	N/A	3133	N/A
44-1 LVV2	0.60	28.4	1920	15%	2259	N/A	N/A	N/A	N/A	816	N/A
44-2 Main Stack	1.08	35.1	5400	23%	7013	N/A	N/A	N/A	N/A	2532	N/A
44-2 LVV	1.09	35.3	16200	7%	17476	N/A	N/A	N/A	N/A	5340	N/A
Calciner 4 LVV	0.89	41.7	7800	24%	10263	N/A	N/A	N/A	N/A	5417	N/A
Calciner 4 Extraction Hoods	0.88	37.8	4200	1%	4255	N/A	N/A	N/A	N/A	757	N/A
48A Tank Exhaust	0.30	9.5	240	35%	369	N/A	N/A	N/A	N/A	697	N/A
47K1 oxalate filter press building stack	0.84	35.0	20000	9%	21930	N/A	N/A	N/A	N/A	6701	0.23
Grouped Sources:											
Mill 3 Trommel Vent	0.45	13.0	8335	22%	10618	N/A	N/A	N/A	0.23	12024	0.19
Mill 4 Trommel Vent	0.45	13.0	8335	22%	10618	N/A	N/A	N/A	0.23	12024	0.19
Mill 5 Trommel Vent	0.45	13.0	8335	22%	10618	N/A	N/A	N/A	0.23	12024	0.19
25A-1 Tank Vents (Vent 1)	0.75	25.4	372	70%	1238	N/A	N/A	N/A	N/A	11819	0.57
25A-1 Tank Vents (Vent 2)	0.75	25.4	372	70%	1238	N/A	N/A	N/A	N/A	11819	0.57
25A-2 Tank Vents	0.50	25.4	743	70%	2477	N/A	N/A	N/A	N/A	23638	1.13
25A-3 Tank Vents (Vent 1)	0.75	25.4	1785	86%	12750	N/A	N/A	N/A	N/A	820604	2.72
25A-3 Tank Vents (Vent 2)	0.75	25.4	1785	86%	12750	N/A	N/A	N/A	N/A	820604	2.72
25A-4 Tank Vents	0.55	25.4	743	70%	2477	N/A	N/A	N/A	N/A	23638	1.13
Blow-off (stack 1)	0.73	24.3	62	99%	6029	N/A	N/A	N/A	N/A	186984	0.06
Blow-off (stack 2)	0.73	24.3	221	99%	21387	N/A	N/A	N/A	N/A	663297	0.23
35J-11 Tank Vents (Non cons)	0.49	9.7	2017	19%	2490	N/A	N/A	N/A	1.68E-03	20045	0.03
35J-12 Tank Vents (Non cons)	0.49	9.7	1801	19%	2223	N/A	N/A	N/A	1.50E-03	17899	0.03
35J-13 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	0.01
35J-14 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	0.01
35J-15 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	0.01
35J-24 Tank Vents (Non cons)	0.49	9.7	364	68%	1138	N/A	N/A	N/A	3.03E-04	8395	0.01
35J-25 Tank Vents (Non cons)	0.49	9.7	528	68%	1650	N/A	N/A	N/A	4.40E-04	12178	0.01
B26 Stacks (Existing)	1.13	27.0	38585	50%	77170	N/A	N/A	N/A	N/A	285100	0.72
35A-1 Tank Vent (Non cons)	0.60	16.5	0	24%	0	N/A	N/A	N/A	N/A	0	0.00
35A-2 Tank Vent (Non cons)	0.60	16.5	1069	24%	1407	N/A	N/A	N/A	N/A	44710	0.08
35A-1 overflow pipe (during filter press dumps)	0.40	0.1	0	24%	0	N/A	N/A	N/A	N/A	0	0.00
35A-2 overflow pipe (during filter press dumps)	0.40	0.1	1971	24%	2593	N/A	N/A	N/A	N/A	82435	0.14
Calciner 1-3 Pan Filter Exhaust Vents	0.31	20.1	5700	32%	8382	N/A	N/A	N/A	N/A	10711	N/A

2018 s.46 2.85Mtpa FORECAST EMISSION RATES - PEAK
Legend: 0 denotes measured but not detected; N/A denotes no data gathered as it is presumed negligible; '-' denotes not applicable where a source did not exist.

					gamere a ae ma		rganic Compounds					
Source	Acetaldehyde	Acetone	BaP Equivalents	Benzene	2-Butanone	Ethylbenzene	Formaldehyde	Styrene	Toluene	1,2,4 Trimethylbenzene	1,3,5 Trimethylbenzene	Xylenes
	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s	g/s
Combustion Equipment Point Sources:												
Liquor Burning	3.89E-02	4.30E-01	7.04E-07	5.32E-03	1.11E-02	0.00E+00	2.46E-02	0.00E+00	7.37E-04	0.00E+00	0.00E+00	1.84E-04
Calciner 1	2.25E-01	2.25E-01	1.01E-06	2.25E-02	1.80E-02	1.80E-04	3.82E-01	3.82E-04	1.93E-03	0.00E+00	0.00E+00	1.01E-03
Calciner 2	2.41E-01	2.38E-01	1.08E-06	3.42E-02	3.59E-02	1.93E-04	3.85E-01	4.09E-04	2.07E-03	0.00E+00	0.00E+00	1.08E-03
Calciner 3	5.00E-01	3.83E-01	1.57E-06	3.22E-02	2.16E-02	2.79E-04	5.42E-01	5.92E-04	3.00E-03	0.00E+00	0.00E+00	1.57E-03
Calciner 4	2.65E-01	4.35E-01	1.78E-06	1.66E-02	1.98E-02	7.90E-04	5.53E-01	7.90E-04	3.95E-03	2.77E-04	0.00E+00	1.98E-03
Boiler 1	1.16E-02	5.82E-02	N/A	8.72E-03	1.16E-02	0.00E+00	1.16E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 2	1.63E-02	3.66E-02	N/A	6.10E-03	8.13E-03	0.00E+00	8.13E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Boiler 3	7.66E-03	4.60E-02	N/A	5.75E-03	7.66E-03	0.00E+00	7.66E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	N/A
Gas Turbine 1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Oxalate Kiln	0.00E+00	6.38E-02	N/A	0.00E+00	0.00E+00	N/A	4.43E-03	N/A	N/A	N/A	N/A	N/A
Non-Combustion Equipment Point Sources:												
Calciner 1-3 Low Volume Vent (100m multiflue)	1.74E-02	1.57E-01	N/A	3.22E-05	8.70E-03	0.00E+00	0.00E+00	0.00E+00	8.70E-03	0.00E+00	0.00E+00	2.00E-03
45K Cooling Tower 2	0.00E+00	1.57E+00	7.19E-06	0.00E+00	3.15E-01	0.00E+00	2.61E-01	3.60E-03	4.05E-03	0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 3	0.00E+00	1.62E+00	7.38E-06	0.00E+00	3.23E-01	0.00E+00	2.68E-01	3.69E-03	4.15E-03	0.00E+00	0.00E+00	0.00E+00
45K Cooling Tower 1	0.00E+00	1.09E+00	4.98E-06	0.00E+00	2.18E-01	0.00E+00	1.80E-01	2.49E-03	2.80E-03	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 1	N/A	1.55E-01	N/A	0.00E+00	3.10E-02	0.00E+00	2.56E-02	3.54E-04	3.98E-04	0.00E+00	0.00E+00	0.00E+00
50 Cooling Tower 2	N/A	1.55E-01	N/A	0.00E+00	3.10E-02	0.00E+00	2.56E-02	3.54E-04	3.98E-04	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 0 precip tanks	0.00E+00	1.18E-03	N/A	3.84E-05	3.54E-04	5.02E-05	0.00E+00	3.44E-05	8.56E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 1 precip tanks	0.00E+00	9.14E-04	N/A	2.97E-05	2.74E-04	3.88E-05	0.00E+00	2.67E-05	6.63E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 2 precip tanks	0.00E+00	1.26E-03	N/A	0.00E+00	3.22E-04	0.00E+00	0.00E+00	0.00E+00	1.33E-04	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 3 precip tanks	0.00E+00	5.69E-04	N/A	0.00E+00	1.57E-04	0.00E+00	0.00E+00	0.00E+00	3.60E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 4 precip tanks	0.00E+00	6.51E-04	N/A	0.00E+00	1.80E-04	0.00E+00	0.00E+00	0.00E+00	4.11E-05	0.00E+00	0.00E+00	0.00E+00
Building 45 - Row 5 precip tanks	0.00E+00	6.51E-04	N/A	0.00E+00	1.80E-04	0.00E+00	0.00E+00	0.00E+00	4.11E-05	0.00E+00	0.00E+00	0.00E+00
44-1 Main Stack	1.75E-03	1.75E-02	N/A	0.00E+00	2.92E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV1	8.67E-04	4.98E-03	N/A	0.00E+00	1.26E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-1 LVV2	4.59E-04	2.24E-03	N/A	0.00E+00	6.40E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 Main Stack	2.85E-03	3.90E-02	N/A	0.00E+00	1.40E-02	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
44-2 LVV	7.65E-04	3.60E-03	N/A	0.00E+00	1.62E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 LVV	7.37E-03	5.85E-02	N/A	0.00E+00	8.67E-03	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
Calciner 4 Extraction Hoods	0.00E+00	2.57E-03	N/A	0.00E+00	3.03E-04	N/A	0.00E+00	N/A	N/A	N/A	N/A	N/A
48A Tank Exhaust	9.33E-05	1.07E-03	N/A	4.07E-05	3.80E-04	N/A	0.00E+00					
47K1 oxalate filter press building stack	2.22E-03	3.28E-02	N/A	N/A	3.17E-02	1.28E-04	0.00E+00	N/A	2.61E-04	N/A	N/A	0.00E+00
Grouped Sources:												
Mill 3 Trommel Vent	4.21E-02	1.32E-01	2.11E-08	1.62E-04	6.00E-03	0.00E+00	0.00E+00	0.00E+00	4.22E-04	1.53E-03	0.00E+00	1.48E-04
Mill 4 Trommel Vent	4.21E-02	1.32E-01	2.11E-08	1.62E-04	6.00E-03	0.00E+00	0.00E+00	0.00E+00	4.22E-04	1.53E-03	0.00E+00	1.48E-04
Mill 5 Trommel Vent	4.21E-02	1.32E-01	2.11E-08	1.62E-04	6.00E-03	0.00E+00	0.00E+00	0.00E+00	4.22E-04	1.53E-03	0.00E+00	1.48E-04
25A-1 Tank Vents (Vent 1)	9.46E-03	6.65E-02	0.00E+00	2.06E-04	7.38E-03	8.26E-05	0.00E+00	1.03E-05	1.99E-03	3.82E-04	1.55E-04	2.99E-04
25A-1 Tank Vents (Vent 2)	9.46E-03	6.65E-02	0.00E+00	2.06E-04	7.38E-03	8.26E-05	0.00E+00	1.03E-05	1.99E-03	3.82E-04	1.55E-04	2.99E-04
25A-2 Tank Vents	1.89E-02	1.33E-01	0.00E+00	4.13E-04	1.48E-02	1.65E-04	0.00E+00	2.06E-05	3.98E-03	7.64E-04	3.10E-04	5.99E-04
25A-3 Tank Vents (Vent 1)	2.72E-01	2.97E-01	0.00E+00	9.92E-04	3.74E-02	3.97E-04	0.00E+00	4.96E-05	9.57E-03	1.83E-03	7.44E-04	1.44E-03
25A-3 Tank Vents (Vent 2)	2.72E-01	2.97E-01	0.00E+00	9.92E-04	3.74E-02	3.97E-04	0.00E+00	4.96E-05	9.57E-03	1.83E-03	7.44E-04	1.44E-03
25A-4 Tank Vents	1.89E-02	1.33E-01	0.00E+00	4.13E-04	1.48E-02	1.65E-04	0.00E+00	2.06E-05	3.98E-03	7.64E-04	3.10E-04	5.99E-04
Blow-off (stack 1)	1.22E-02	6.78E-02	N/A	0.00E+00	1.03E-02	N/A	2.08E-04	N/A	8.13E-05	0.00E+00	N/A	N/A
Blow-off (stack 2)	4.33E-02	2.40E-01	N/A	0.00E+00	3.65E-02	N/A	7.37E-04	N/A	2.89E-04	0.00E+00	N/A	N/A
35J-11 Tank Vents (Non cons)	8.96E-03	5.51E-02	5.10E-07	0.00E+00	4.41E-03	0.00E+00	5.04E-04	0.00E+00	1.38E-03	9.56E-04	2.76E-04	0.00E+00
35J-12 Tank Vents (Non cons)	8.00E-03	4.92E-02	4.56E-07	0.00E+00	3.94E-03	0.00E+00	4.50E-04	0.00E+00	1.24E-03	8.54E-04	2.47E-04	0.00E+00
35J-13 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00
35J-14 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00
35J-15 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00
35J-24 Tank Vents (Non cons)	4.12E-03	8.54E-03	9.21E-08	0.00E+00	8.15E-04	0.00E+00	6.77E-05	0.00E+00	2.50E-04	1.73E-04	4.98E-05	0.00E+00
35J-25 Tank Vents (Non cons)	5.98E-03	1.24E-02	1.34E-07	0.00E+00	1.18E-03	0.00E+00	9.83E-05	0.00E+00	3.62E-04	2.50E-04	7.23E-05	0.00E+00
B26 Stacks (Existing)	3.88E-02	7.60E-02	0.00E+00	0.00E+00	6.32E-03	0.00E+00	0.00E+00	0.00E+00	8.57E-04	0.00E+00	0.00E+00	0.00E+00
35A-1 Tank Vent (Non cons)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
35A-2 Tank Vent (Non cons)	1.73E-02	5.95E-02	1.66E-06	6.68E-05	8.89E-03	0.00E+00	0.00E+00	0.00E+00	3.88E-03	1.02E-03	2.52E-04	3.48E-04
35A-1 overflow pipe (during filter press dumps)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
35A-2 overflow pipe (during filter press dumps)	3.19E-02	1.10E-01	3.07E-06	1.23E-04	1.64E-02	0.00E+00	0.00E+00	0.00E+00	7.14E-03	1.89E-03	4.64E-04	6.42E-04
Calciner 1-3 Pan Filter Exhaust Vents	1.74E-02	6.65E-02	0.00E+00	0.00E+00	8.55E-03	0.00E+00	0.00E+00	0.00E+00	9.98E-05	0.00E+00		0.00E+00